(2010•宜昌)如圖,正六邊形ABCDEF關(guān)于直線l的軸對稱圖形是六邊形A′B′C′D′E′F′,下列判斷錯誤的是( )

A.AB=A′B′
B.BC∥B′C′
C.直線l⊥BB′
D.∠A′=120°
【答案】分析:由題意可知本題主要考查軸對稱的性質(zhì),做此題之前可先回憶一下軸對稱的性質(zhì),再利用對稱軸的性質(zhì)來判斷.
解答:解:由圖形可知:
A、點A和B對稱點是點A′和B′,所以AB=A′B′.故A是正確的;
B、點B、C、D、E對稱點是點B′、C′、D′和E′,所以BC∥D′E′,DE∥B′C′.故B是錯誤的.
C、點B、E對稱點分別是點B′、E′,所以BB’⊥直線l.故C是正確的.
D、正六邊形ABCDEF關(guān)于直線l的軸對稱圖形是六邊形A′B′C′D′E′F′
所以六邊形A′B′C′D′E′F′也是正六邊形,則∠A′=120°.故D是正確的.
故選B.
點評:本題考查軸對稱的性質(zhì)與運用.軸對稱的性質(zhì)是學習軸對稱的基礎(chǔ),也是重點、考點,需要牢固掌握.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2010•宜昌)如圖,直線y=hx+d與x軸和y軸分別相交于點A(-1,0),B(0,1),與雙曲線y=在第一象限相交于點C;以AC為斜邊、∠CAO為內(nèi)角的直角三角形,與以CO為對角線、一邊在x軸上的矩形面積相等;點C,P在以B為頂點的拋物線y=mx2+nx+k上;直線y=hx+d、雙曲線y=和拋物線y=ax2+bx+c同時經(jīng)過兩個不同的點C,D.
(1)確定t的值;
(2)確定m,n,k的值;
(3)若無論a,b,c取何值,拋物線y=ax2+bx+c都不經(jīng)過點P,請確定P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《一次函數(shù)》(07)(解析版) 題型:解答題

(2010•宜昌)如圖,直線y=hx+d與x軸和y軸分別相交于點A(-1,0),B(0,1),與雙曲線y=在第一象限相交于點C;以AC為斜邊、∠CAO為內(nèi)角的直角三角形,與以CO為對角線、一邊在x軸上的矩形面積相等;點C,P在以B為頂點的拋物線y=mx2+nx+k上;直線y=hx+d、雙曲線y=和拋物線y=ax2+bx+c同時經(jīng)過兩個不同的點C,D.
(1)確定t的值;
(2)確定m,n,k的值;
(3)若無論a,b,c取何值,拋物線y=ax2+bx+c都不經(jīng)過點P,請確定P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省宜昌市中考數(shù)學試卷(解析版) 題型:解答題

(2010•宜昌)如圖,直線y=hx+d與x軸和y軸分別相交于點A(-1,0),B(0,1),與雙曲線y=在第一象限相交于點C;以AC為斜邊、∠CAO為內(nèi)角的直角三角形,與以CO為對角線、一邊在x軸上的矩形面積相等;點C,P在以B為頂點的拋物線y=mx2+nx+k上;直線y=hx+d、雙曲線y=和拋物線y=ax2+bx+c同時經(jīng)過兩個不同的點C,D.
(1)確定t的值;
(2)確定m,n,k的值;
(3)若無論a,b,c取何值,拋物線y=ax2+bx+c都不經(jīng)過點P,請確定P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《圖形的旋轉(zhuǎn)》(02)(解析版) 題型:選擇題

(2010•宜昌)如圖,在方格紙上△DEF是由△ABC繞定點P順時針旋轉(zhuǎn)得到的.如果用(2,1)表示方格紙上A點的位置,(1,2)表示B點的位置,那么點P的位置為( )

A.(5,2)
B.(2,5)
C.(2,1)
D.(1,2)

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省宜昌市中考數(shù)學試卷(解析版) 題型:選擇題

(2010•宜昌)如圖,正六邊形ABCDEF關(guān)于直線l的軸對稱圖形是六邊形A′B′C′D′E′F′,下列判斷錯誤的是( )

A.AB=A′B′
B.BC∥B′C′
C.直線l⊥BB′
D.∠A′=120°

查看答案和解析>>

同步練習冊答案