、(本題12分)如圖,設(shè)拋物線C1:, C2:,C1C2的交點(diǎn)為A, B,點(diǎn)A的坐標(biāo)是,點(diǎn)B的橫坐標(biāo)是2.

 

 

 

 

 

 

 

 

 

 


   1.(1)求的值及點(diǎn)B的坐標(biāo); 

2.(2)點(diǎn)D在線段AB上,過Dx軸的垂線,垂足為點(diǎn)H,在DH的右側(cè)作正三角形DHG. 記過C2頂點(diǎn)的直線為,且x軸交于點(diǎn)N.

① 若過△DHG的頂點(diǎn)G,點(diǎn)D的坐標(biāo)為(1, 2),求點(diǎn)N的橫坐標(biāo);

② 若與△DHG的邊DG相交,求點(diǎn)N的橫坐標(biāo)的取值范圍.

 

【答案】

 

1.解:(1)∵ 點(diǎn)A在拋物線C1上,∴ 把點(diǎn)A坐標(biāo)代入=1. 

∴ 拋物線C1的解析式為,

     設(shè)B(-2,b),  ∴  b4,  ∴  B(-2,-4) .    

 

2.

(2)①如圖1,

∵  M(1, 5),D(1, 2), 且DHx軸,∴ 點(diǎn)MDH上,MH=5.

過點(diǎn)GGEDH,垂足為E,

由△DHG是正三角形,可得EG=, EH=1,

∴  ME=4.                         設(shè)N ( x, 0 ), 則 NHx1,

由△MEG∽△MHN,得  ,

,    ∴ ,

∴ 點(diǎn)N的橫坐標(biāo)為.        

② 當(dāng)點(diǎn)移到與點(diǎn)A重合時(shí),如圖2,

直線DG交于點(diǎn)G,此時(shí)點(diǎn)的橫坐標(biāo)最大.

過點(diǎn),x軸的垂線,垂足分別為點(diǎn),F,  設(shè)x,0),

∵  A (2, 4),    ∴  G (, 2),

∴  NQ=,F =, GQ=2, MF =5.

∵ △NGQ∽△NMF,

,

,

.          

當(dāng)點(diǎn)D移到與點(diǎn)B重合時(shí),如圖3,直線DG交于點(diǎn)D,即點(diǎn)B,

此時(shí)點(diǎn)N的橫坐標(biāo)最小.

   ∵  B(-2, -4),    ∴  H(-2, 0), D(-2, -4),

設(shè)Nx,0),

∵ △BHN∽△MFN, ∴

,    ∴ .   ∴ 點(diǎn)N橫坐標(biāo)的范圍為 x且x≠0. 

 

 

 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題12分) 如圖,在平行四邊形ABCD中,AB在x軸上,D點(diǎn)y軸上,,B點(diǎn)坐標(biāo)為(4,0).點(diǎn)是邊上一點(diǎn),且.點(diǎn)、分別從同時(shí)出發(fā),以1厘米/秒的速度分別沿、向點(diǎn)運(yùn)動(dòng)(當(dāng)點(diǎn)F運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)E隨之停止運(yùn)動(dòng)),EM、CD的延長線交于點(diǎn)P,F(xiàn)PAD于點(diǎn)Q.⊙E半徑為,設(shè)運(yùn)動(dòng)時(shí)間為秒。

(1)求直線BC的解析式。

(2)當(dāng)為何值時(shí),?

(3)在(2)問條件下,⊙E與直線PF是否相切;如果相切,加以證明,并求出切點(diǎn)的坐標(biāo)。如果不相切,說明理由。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

 

(本題12分)如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),D是△ABC外的一點(diǎn), ∠AOB= 110°,

∠BOC= ,△BOC ≌△ADC,∠OCD=60°,連接OD。

(1)求證:△OCD是等邊三角形;

(2)當(dāng)=150°時(shí),試判斷△AOD 的形狀,并說明理由;

(3)探究:當(dāng)為多少度時(shí),△AOD是等腰三角形。

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題12分)如圖,正方形ABCD的邊長是2,邊BC在x軸上,邊AB在y軸上,,將一把三角尺如圖放置,其中M為AD的中點(diǎn),逆時(shí)針旋轉(zhuǎn)三角尺.

(1)當(dāng)三角尺的一邊經(jīng)過C點(diǎn)時(shí),此時(shí)三角尺的另一邊和AB邊交于點(diǎn),求此時(shí)直線PM的解析式;

(2)繼續(xù)旋轉(zhuǎn)三角尺,三角尺的一邊與x軸交于點(diǎn)G, 三角尺的另一邊與AB交于,PM的延長線與CD的延長線交于點(diǎn)F,若三角形GF的面積為4,求此時(shí)直線PM的解析式;

(3)當(dāng)旋轉(zhuǎn)到三角尺的一邊經(jīng)過點(diǎn)B,另一直角邊的延長線與x軸交于點(diǎn)G,,求此時(shí)三角形GOF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題12分)如圖,拋物線y=ax2bxcx軸于點(diǎn)A(-3,0),點(diǎn)B(1,0),交y軸于點(diǎn)E(0,-3)。點(diǎn)C是點(diǎn)A關(guān)于點(diǎn)B的對稱點(diǎn),點(diǎn)F是線段BC的中點(diǎn),直線l過點(diǎn)F且與y軸平行。直線y=-xm過點(diǎn)C,交y軸于D點(diǎn).
⑴求拋物線的函數(shù)表達(dá)式;
⑵點(diǎn)K為線段AB上一動(dòng)點(diǎn),過點(diǎn)Kx軸的垂線與直線CD交于點(diǎn)H,與拋物線交于     點(diǎn)G,求線段HG長度的最大值;
⑶在直線l上取點(diǎn)M,在拋物線上取點(diǎn)N,使以點(diǎn)A,C,MN為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年人教版九年級(jí)第一學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

(本題12分)如圖,已知拋物線y=x2+3與x軸交于點(diǎn)A、B,與直線y=x+b相交于點(diǎn)B、C,直線y=x+b與y軸交于點(diǎn)E.
(1)寫出直線BC的解析式;
(2)求△ABC的面積;
(3)若點(diǎn)M在線段AB上以每秒1個(gè)單位長度的速度從A向B運(yùn)動(dòng)(不與A、B重合),同時(shí),點(diǎn)N在射線BC上以每秒2個(gè)單位長度的速度從B向C運(yùn)動(dòng)。設(shè)運(yùn)動(dòng)時(shí)間為t秒,請寫出△MNB的面積s與t的函數(shù)關(guān)系式,并求出點(diǎn)M運(yùn)動(dòng)多少時(shí)間時(shí),△MNB的面積最大,最大面積是多少?

查看答案和解析>>

同步練習(xí)冊答案