如圖,∠B=∠C,補充下列條件后,仍無法判定△ABE≌△ACD的是
A.AD=AE
B.∠AEB=∠ADC
科目:初中數(shù)學 來源:2012-2013學年北京市第六十六中學七年級下學期期中考試數(shù)學試卷(帶解析) 題型:解答題
補全證明過程
已知:如圖,∠1=∠2,∠C=∠D。
求證:∠A=∠F。
證明:∵∠1=∠2(已知),
又∠1=∠DMN(___________________),
∴∠2=∠_________(等量代換)。
∴DB∥EC(同位角相等,兩直線平行)。
∴∠A=∠F(兩直線平行,內(nèi)錯角相等)。
查看答案和解析>>
科目:初中數(shù)學 來源:2015屆北京市七年級下學期期中考試數(shù)學試卷(解析版) 題型:解答題
補全證明過程
已知:如圖,∠1=∠2,∠C=∠D。
求證:∠A=∠F。
證明:∵∠1=∠2(已知),
又∠1=∠DMN(___________________),
∴∠2=∠_________(等量代換)。
∴DB∥EC(同位角相等,兩直線平行)。
∴∠A=∠F(兩直線平行,內(nèi)錯角相等)。
查看答案和解析>>
科目:初中數(shù)學 來源:2012年浙教版初中數(shù)學八年級上2.5直角三角形練習卷(解析版) 題型:解答題
閱讀下面短文:如圖1,△ABC是直角三角形,∠C=90°,現(xiàn)將△ABC補成長方形,使△ABC的兩個頂點為長方形一邊的兩個端點,第三個頂點落在長方形這一邊的對邊上,那么符合要求的長方形可以畫出兩個:長方形ACBD和長方形AEFB(如圖2)。
解答問題:
(1)設圖2中長方形ACBD和長方形AEFB的面積分別為S1,S2,則S1 S2(填“>”、“=”或“<”)
(2)如圖3,△ABC是鈍角三角形,按短文中的要求把它補成長方形,那么符合要求的長方形可以畫出 個,利用圖3把它畫出來。
(3)如圖4,△ABC是銳角三角形且三邊滿足BC>AC>AB,按短文中的要求把它補成長方形,那么符合要求的長方形可以畫出 個,利用圖4把它畫出來。
(4)在(3)中所畫出的長方形中,哪一個的周長最小?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源:2011-2012學年江蘇鹽城鹽都區(qū)九年級下學期期中質量檢測數(shù)學試卷(解析版). 題型:解答題
問題提出
我們在分析解決某些數(shù)學問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進行一定的轉化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
問題解決
如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大。
解:由圖可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2.
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
類比應用
1.已知:多項式M =2a2-a+1 ,N =a2-2a .試比較M與N的大小.
2.已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊
滿足a <b < c ,現(xiàn)將△ABC 補成長方形,使得△ABC的兩個頂
點為長方形的兩個端點,第三個頂點落在長方形的這一邊的對邊上。
①這樣的長方形可以畫 個;
②所畫的長方形中哪個周長最?為什么?
拓展延伸
已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a <b < c ,畫其BC邊上的內(nèi)接正方形EFGH , 使E、F兩點在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
(1) 如圖①,△ABC是等邊三角形,D是AB上一點,以CD為一邊向上作等邊△ECD,連接AE,求證:∠CAE=∠CBA.
(2) 在上題(1)中,當D點在AB的延長線上時,其他條件不變,如圖②所示,請你補畫出題意的圖形,(1)的結論還成立嗎?若成立,請給予證明;若不成立,請簡要說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com