如圖,在直角坐標(biāo)系中,平行四邊形AOCD的邊OC在x軸上,邊AD與y軸交與點(diǎn)H,CD=10,。點(diǎn)E、F分別是邊AD和對(duì)角線OD上的動(dòng)點(diǎn)(點(diǎn)E不與A、D重合),

∠OEF=∠A=∠DOC,設(shè)AE=t,OF=s。

(1) 求直線DC的解析式;

(2) 求s關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;

(3) 點(diǎn)E在邊AD上移動(dòng)的過程中,△OEF是否有可能成為一個(gè)等腰三角形?若有可能,請(qǐng)求出t的值,若不可能,請(qǐng)說明理由。

                               


(1)解:∵AOCD是平行四邊形

∴AO=DC=10, ∠A=∠OCD

∴OH=OA·=10×=8

又∵∠A=∠DOC, AD//OC ∴∠DOC=∠ADO ,∴∠A=∠ADO OH⊥AD ,∴AH=HD=6,

∴AD=OC=12, ∴D(6.8) C(12.O) 設(shè)直線DC的解析式為y=kx+b可得 -6k=8.k=.b=16. ∴y=x+16.                              (4分)

(2)∵OA=OD=10,∵OF=S ,∴FD=10-S, AE=t,DE=12-t

又∵∠OEF=∠EDF ∴∠AEO+∠FED=∠DEF+∠EFD.

∴∠AEO=∠EFD ∠A=∠EDF ∴△AEO∽△DFE ∴

 ∴()  (3分)

(3) ∠OFE∠FDE=∠OEF ∴OFOE                               (1分)

∴△OEF是等腰三角形,則只有①OF=EF  ②OE=EF

<1>當(dāng)OF=EF時(shí)。

∴∠OEF=∠EOF=∠EDO ∴EO=ED 即,t=         (2分)

<2>當(dāng)OE=EF時(shí)

=1 即OA=DE 12-t=10 t=2

∴當(dāng)t=或t=2時(shí) △OEF是等腰三角形。                         

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


點(diǎn)A(-1,0)B(4,0)C(0,2)是平面直角坐標(biāo)系上的三點(diǎn)。

① 如圖10-1先過A、B、C作△ABC,然后在在軸上方作一個(gè)正方形D1E1F1G1,

使D1E1在AB上, F1、G1分別在BC、AC上

② 如圖10-2先過A、B、C作圓⊙M,然后在軸上方作一個(gè)正方形D2E2F2G2,

使D2E2軸上 ,F(xiàn)2、G2在圓上

③ 如圖10-3先過A、B、C作拋物線,然后在軸上方作一個(gè)正方形D3E3F3G3,

使D3E3軸上, F3、G3在拋物線上

(1)請(qǐng)比較 正方形D1E1F1G1 , 正方形D2E2F2G2 , 正方形D3E3F3G3 的面積大小

(2)并簡(jiǎn)要小結(jié)解決此題所用的方法或定理。

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


當(dāng)滿足條件時(shí),關(guān)于的一元二次方程是否存在實(shí)數(shù)根,若存在求出值,若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


是同一個(gè)數(shù)的平方根,則x的值為              

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


(1)已知∠α和線段x,y(如圖)。用直尺和圓規(guī)作出△ABC,

使∠A=∠α,AB=x,BC=y(tǒng)

(要求畫出圖形,并保留作圖痕跡,不必寫出作法)

(2)已知兩邊及其中一邊的對(duì)角,你能作出滿足這樣條件的三角嗎?  有幾種可能?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


把多項(xiàng)式x4一8x2+16分解因式,所得結(jié)果是(   )

 A.(x-2)2 (x+2)2      B. (x-4)2 (x+4)2      C.(x一4)2         D.(x-4)4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


請(qǐng)你寫出一個(gè)既要運(yùn)用乘法公式又要用提取公因式法分解因式的多項(xiàng)式,你寫的

多項(xiàng)式是                 (寫出一個(gè)即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,一塊直角三角板ABC的斜邊AB與量角器的直徑重合,點(diǎn)D對(duì)應(yīng)54°,則∠BCD的度數(shù)為(    )

A. 27°          B. 54°          C. 63°      D. 36°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


的倒數(shù)是(    ) 

A. -5         B.              C.         D. 5

查看答案和解析>>

同步練習(xí)冊(cè)答案