函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則


  1. A.
    a<0
  2. B.
    b<0
  3. C.
    b2-4ac<0
  4. D.
    abc<0
D
分析:由函數(shù)圖象可知:拋物線開口向上可得出a大于0,與y軸交點在負(fù)半軸可得c小于0,與x軸有兩個交點可得根的判別式大于0,對稱軸在y軸左邊,由a大于0,利用左同右異(對稱軸在y軸左側(cè),a與b符號相同;反之符號不同)的判斷方法即可得出b的符號,從而得出正確的選項.
解答:由函數(shù)圖象可知:拋物線開口向上,故a>0,故選項A錯誤;
對稱軸直線x=-在y軸左側(cè),故-<0,又a>0,
故b>0,故選項B錯誤,
拋物線與x軸有兩個交點,故b2-4ac>0,故選項C錯誤.
由圖象與y軸的交點在y軸的負(fù)半軸上,得到c<0,
故abc<0,故選項D正確;
故選:D.
點評:此題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,其中拋物線的開口方向決定二次項a的符號,拋物線與y軸交點的位置決定c的符號,根據(jù)對稱軸在y軸的左側(cè)或右側(cè),以及a的符號,利用左同右異判定得出b的符號,拋物線與x軸的交點個數(shù)決定了根的判別式與0的關(guān)系,熟練掌握這些知識是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=ax2+bx+c的圖象的頂點坐標(biāo)為(0,
p
2
)
,且ac=
1
4

(1)若該函數(shù)的圖象經(jīng)過點(-1,-1).
①求使y<0成立的x的取值范圍.
②若圓心在該函數(shù)的圖象上的圓與x軸、y軸都相切,求圓心的坐標(biāo).
(2)經(jīng)過A(0,p)的直線與該函數(shù)的圖象相交于M,N兩點,過M,N作x軸的垂線,垂足分別為M1,N1,設(shè)△MAM1,△AM1N1,△ANN1的面積分別為S1,S2,S3,是否存在m,使得對任意實數(shù)p≠0都有S22=mS1S3成立?若存在,求出m的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•道里區(qū)二模)張大叔要圍成一個矩形雞場、雞場的一邊靠墻(墻足夠長),另三邊用總長為56米的籬笆恰好圍成圍成的雞場是如圖所示的矩形ABCD、設(shè)AB邊的長為x,矩形ABCD的面積為S平方米.
(1)請直接寫出S與x之間函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
(2)根據(jù)(1)中的函數(shù)關(guān)系式,計算當(dāng)x為何值時S最大,并求出S的最大值.
【參考公式:二次函數(shù)y=ax2+bx+c(a≠0),當(dāng)x=-
b
2a
時,y最大(小)值=
4ac-b2
4a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•齊河縣一模)如圖為二次函數(shù)y=ax2+bx+c的圖象,在下列說法中:
①abc>0;
②方程ax2+bx+c=0的根為x1=-1,x2=3;
③a+b+c>0;
④當(dāng)x>1時,y隨著x的增大而增大.
正確的說法個數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸相交于點C.連接AC,BC,A(-3,0),C(0,
3
),且當(dāng)x=-4和x=2時二次函數(shù)的函數(shù)值y相等.
(1)求拋物線的解析式;
(2)若點M、N同時從B點出發(fā),均以每秒1個單位長度的速度分別沿BA、BC邊運動,其中一個點到達(dá)終點時,另一點也隨之停止運動.
①當(dāng)運動時間為t秒時,連接MN,將△BMN沿MN翻折,B點恰好落在AC邊上的P處,求t的值及點P的坐標(biāo);
②拋物線的對稱軸上是否存在點Q,使得以B、N、Q為頂點的三角形與△A0C相似?如果存在,請直接寫出點Q的坐標(biāo);如果不存在,請說明理由.
③當(dāng)運動時間為t秒時,連接MN,將△BMN沿MN翻折,得到△PMN.并記△PMN與△AOC的重疊部分的面積為S.求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=ax2+bx+c(a≠O)的圖象如圖所示,現(xiàn)有下列結(jié)論:①abc>0  ②b2-4ac<0  ⑤c<4b  ④a+b>0,則其中正確結(jié)論的個數(shù)是(  )

查看答案和解析>>

同步練習(xí)冊答案