已知一個數(shù)的一個平方根是-3.201,則這個數(shù)的另一個平方根是________.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知y=m2+m+4,若m為整數(shù),在使得y為完全平方數(shù)的所有m的值中,設(shè)m的最大值為a,最小值為b,次小值為c.(注:一個數(shù)如果是另一個整數(shù)的完全平方,那么我們就稱這個數(shù)為完全平方數(shù).)
(1)求a、b、c的值;
(2)對a、b、c進行如下操作:任取兩個求其和再除以
2
,同時求其差再除以
2
,剩下的另一個數(shù)不變,這樣就仍得到三個數(shù).再對所得三個數(shù)進行如上操作,問能否經(jīng)過若干次上述操作,所得三個數(shù)的平方和等于2008證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=-x2+bx+c的圖象與x軸交于B(-2,0),C(4,0)兩點,點E是對稱軸l與x的精英家教網(wǎng)交點.
(1)求二次函數(shù)的解析表達式;
(2)T為對稱軸l上一動點,以點B為圓心,BT為半徑作⊙B,寫出直線CT與⊙B相切時,T點的坐標;
(3)若在x軸上方的P點為拋物線上的動點,且∠BPC為銳角,直接寫出PE的取值范圍;
(4)對于(1)中得到的關(guān)系式,若x為整數(shù),在使得y為完全平方數(shù)的所有x的值中,設(shè)x的最大值為m,最小值為n,次小值為s,求m、n、s的值.(注:一個數(shù)如果是另一個整數(shù)的完全平方,那么就稱這個數(shù)為完全平方數(shù).)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2011•寶安區(qū)一模)閱讀材料:
(1)對于任意實數(shù)a和b,都有(a-b)2≥0,∴a2-2ab+b2≥0,于是得到a2+b2≥2ab,當且僅當a=b時,等號成立.
(2)任意一個非負實數(shù)都可寫成一個數(shù)的平方的形式.即:如果a≥0,則a=(
a
)2
.如:2=(
2
)2
,3=(
3
)3
等.
例:已知a>0,求證:a+
1
2a
2

證明:∵a>0,∴a+
1
2a
=(
a
)2+(
1
2a
)2≥2×
a
×
1
2a
=
2

a+
1
2a
2
,當且僅當a=
2
2
時,等號成立.
請解答下列問題:
某園藝公司準備圍建一個矩形花圃,其中一邊靠墻(墻足夠長),另外三邊用籬笆圍成(如圖所示).設(shè)垂直于墻的一邊長為x米.
(1)若所用的籬笆長為36米,那么:
①當花圃的面積為144平方米時,垂直于墻的一邊的長為多少米?
②設(shè)花圃的面積為S米2,求當垂直于墻的一邊的長為多少米時,這個花圃的面積最大?并求出這個最大面積;
(2)若要圍成面積為200平方米的花圃,需要用的籬笆最少是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀材料:
(1)對于任意實數(shù)a和b,都有(a-b)2≥0,∴a2-2ab+b2≥0,于是得到a2+b2≥2ab,當且僅當a=b時,等號成立.
(2)任意一個非負實數(shù)都可寫成一個數(shù)的平方的形式.即:如果a≥0,則數(shù)學(xué)公式.如:2=數(shù)學(xué)公式,數(shù)學(xué)公式等.
例:已知a>0,求證:數(shù)學(xué)公式
證明:∵a>0,∴數(shù)學(xué)公式
數(shù)學(xué)公式,當且僅當數(shù)學(xué)公式時,等號成立.
請解答下列問題:
某園藝公司準備圍建一個矩形花圃,其中一邊靠墻(墻足夠長),另外三邊用籬笆圍成(如圖所示).設(shè)垂直于墻的一邊長為x米.
(1)若所用的籬笆長為36米,那么:
①當花圃的面積為144平方米時,垂直于墻的一邊的長為多少米?
②設(shè)花圃的面積為S米2,求當垂直于墻的一邊的長為多少米時,這個花圃的面積最大?并求出這個最大面積;
(2)若要圍成面積為200平方米的花圃,需要用的籬笆最少是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年廣東省深圳市寶安區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

閱讀材料:
(1)對于任意實數(shù)a和b,都有(a-b)2≥0,∴a2-2ab+b2≥0,于是得到a2+b2≥2ab,當且僅當a=b時,等號成立.
(2)任意一個非負實數(shù)都可寫成一個數(shù)的平方的形式.即:如果a≥0,則.如:2=,等.
例:已知a>0,求證:
證明:∵a>0,∴
,當且僅當時,等號成立.
請解答下列問題:
某園藝公司準備圍建一個矩形花圃,其中一邊靠墻(墻足夠長),另外三邊用籬笆圍成(如圖所示).設(shè)垂直于墻的一邊長為x米.
(1)若所用的籬笆長為36米,那么:
①當花圃的面積為144平方米時,垂直于墻的一邊的長為多少米?
②設(shè)花圃的面積為S米2,求當垂直于墻的一邊的長為多少米時,這個花圃的面積最大?并求出這個最大面積;
(2)若要圍成面積為200平方米的花圃,需要用的籬笆最少是多少米?

查看答案和解析>>

同步練習(xí)冊答案