【題目】下列各組數(shù)據(jù)中,能構(gòu)成三角形的是( )
A. 1、2、3 B. 2、3、4 C. 4、9、4 D. 2、1、4
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程為ax2+bx+5=0(a≠0)的解是x=1,則2013﹣a﹣b的值是( )
A.2 018
B.2 008
C.2 014
D.2 012
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.求:
(1)∠BAE的度數(shù);
(2)∠DAE的度數(shù);
(3)探究:小明認(rèn)為如果條件∠B=70°,∠C=30°改成∠B-∠C=40°,也能得出∠DAE的度數(shù)?若能,請你寫出求解過程;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)∠ABE=15°,∠BAD=40°,求∠BED的度數(shù);
(2)在△BED中作BD邊上的高;
(3)若△ABC的面積為40,BD=5,則點E到BC邊的距離為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:配方法是中學(xué)數(shù)學(xué)的重要方法,用配方法可求最大(小)值。如對于任意正實數(shù)、x,可作變形:x+=(-)2+2,因為(-)2≥0,所以x+≥2(當(dāng)x=時取等號).
記函數(shù)y=x+(a>0,x>0),由上述結(jié)論可知:當(dāng)x=時,該函數(shù)有最小值為2.
直接應(yīng)用: 已知函數(shù)y1=x(x>0)與函數(shù)y2 = (x>0),則當(dāng)x= 時,y1+y2取得最小值為 .
變形應(yīng)用: 已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=(x+1)2+4(x>-1),求 的最小值,并指出取得該最小值時相應(yīng)的x的值.
實際應(yīng)用:汽車的經(jīng)濟時速是指汽車最省油的行駛速度。某種汽車在每小時70~110公里之間行駛時(含70公里和110公里),每公里耗油(+)升。若該汽車以每小時x公里的速度勻速行駛,1小時的耗油量為y升.
①、求y關(guān)于x的函數(shù)關(guān)系式(寫出自變量x的取值范圍);
②、求該汽車的經(jīng)濟時速及經(jīng)濟時速的百公里耗油量(結(jié)果保留小數(shù)點后一位).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(1)班所有學(xué)生參加年初中畢業(yè)生升學(xué)體育測試,根據(jù)測試評分標(biāo)準(zhǔn),將他們的成績進行統(tǒng)計后分為、、、四等,并繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(未完成),請結(jié)合圖中所給信息解答下列問題:
(1)九年級(1)班參加體育測試的學(xué)生有 人;
(2)將條形統(tǒng)計圖補充完整;
(3)在扇形統(tǒng)計圖中,等級部分所占的百分比是 ,等級對應(yīng)的圓心角的度數(shù)為 ;
(4)若該校九年級學(xué)生共有850人參加體育測試,估計達到級和級的學(xué)生共有 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市地鐵一號與地鐵二號線接通后,該市交通通行和轉(zhuǎn)換能力成倍增長,該工程投資預(yù)算約為930000萬元,這一數(shù)據(jù)用科學(xué)記數(shù)法表示為( )
A.9.3×105萬元
B.9.3×106萬元
C.0.93×106萬元
D.9.3×104萬元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于任意三角形的高,下列說法不正確的是( )
A. 直角三角形只有一條高
B. 銳角三角形有三條高
C. 任意三角形都有三條高
D. 鈍角三角形有兩條高在三角形的外部
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com