如圖8, △ABC是等邊三角形,D是BC延長(zhǎng)線上任意一點(diǎn),以AD為一邊向右側(cè)作等邊△ADE,連接CE.

1.求證:△CAE≌△BAD;

2.判斷直線AB與EC的位置關(guān)系,并說(shuō)明理由.

 

【答案】

 

1.見(jiàn)解析

2.EC∥AB理由見(jiàn)解析。

【解析】(1)∵ △ADE與△ABC都是等邊三角形,

∴ AC = AB,AE = AD,∠DAE =∠BAC =60°.

∴ ∠DAE+∠CAD =∠BAC+∠CAD. 即 ∠CAE =∠BAD.

∴ △CAE≌△BAD.

(2)EC∥AB.

由△CAE≌△BAD, ∴ ∠ACE=∠B=60°, ∴ ∠ACE=∠BAC=60°,

            ∴ EC∥AB. 

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是邊長(zhǎng)為2的等邊三角形,將△ABC沿射線BC向右平移到△DCE,連接AD、BD,下列結(jié)論錯(cuò)誤的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ABC是銳角三角形,以BC為直徑作⊙O,AD是⊙O的切線,從AB上一點(diǎn)E作AB的垂線交AC的延長(zhǎng)線于F,若
AB
AF
=
AE
AC

求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•玉林)如圖,△ABC是⊙O內(nèi)接正三角形,將△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)30°得到△DEF,DE分別交AB,AC于點(diǎn)M,N,DF交AC于點(diǎn)Q,則有以下結(jié)論:①∠DQN=30°;②△DNQ≌△ANM;③△DNQ的周長(zhǎng)等于AC的長(zhǎng);④NQ=QC.其中正確的結(jié)論是
①②③
①②③
.(把所有正確的結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是等邊三角形,D是BC邊的中點(diǎn),點(diǎn)E在AC的延長(zhǎng)線上,且∠CDE=30°.若AD=5,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是等邊三角形,則∠ABD=
120
120
度.

查看答案和解析>>

同步練習(xí)冊(cè)答案