(2005•天津)已知一組數(shù)據(jù):-2,-2,3,-2,x,-1,若這組數(shù)據(jù)的平均數(shù)是0.5,則這組數(shù)據(jù)的中位數(shù)是   
【答案】分析:根據(jù)平均數(shù)的公式就可以求出x的值,再根據(jù)中位數(shù)的定義就可以求出中位數(shù)的值.
解答:解:因?yàn)閿?shù)據(jù)的平均數(shù)是0.5,所以x=0.5×6+2+2-3+2-1=5;
則中位數(shù)是按從小到大排列后第三,第四兩個(gè)數(shù)的平均數(shù)作為中位數(shù),故這組數(shù)據(jù)的中位數(shù)是(-2-1)=-1.5.
故填-1.5.
點(diǎn)評:注意:找中位數(shù)的時(shí)候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個(gè)來確定中位數(shù).如果數(shù)據(jù)有奇數(shù)個(gè),則正中間的數(shù)字即為所求;如果是偶數(shù)個(gè),則是中間兩位數(shù)的平均數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2005•天津)已知二次函數(shù)y=ax2+bx+c.
(1)若a=2,c=-3,且二次函數(shù)的圖象經(jīng)過點(diǎn)(-1,-2),求b的值;
(2)若a=2,b+c=-2,b>c,且二次函數(shù)的圖象經(jīng)過點(diǎn)(p,-2),求證:b≥0;
(3)若a+b+c=0,a>b>c,且二次函數(shù)的圖象經(jīng)過點(diǎn)(q,-a),試問當(dāng)自變量x=q+4時(shí),二次函數(shù)y=ax2+bx+c所對應(yīng)的函數(shù)值y是否大于0?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(04)(解析版) 題型:解答題

(2005•天津)已知關(guān)于x的一次函數(shù)y=kx+1和反比例函數(shù)y=的圖象都經(jīng)過點(diǎn)(2,m).
(1)求一次函數(shù)的解析式;
(2)求這兩個(gè)函數(shù)圖象的另一個(gè)交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年中考數(shù)學(xué)模擬試卷(3)(解析版) 題型:解答題

(2005•天津)已知二次函數(shù)y=ax2+bx+c.
(1)若a=2,c=-3,且二次函數(shù)的圖象經(jīng)過點(diǎn)(-1,-2),求b的值;
(2)若a=2,b+c=-2,b>c,且二次函數(shù)的圖象經(jīng)過點(diǎn)(p,-2),求證:b≥0;
(3)若a+b+c=0,a>b>c,且二次函數(shù)的圖象經(jīng)過點(diǎn)(q,-a),試問當(dāng)自變量x=q+4時(shí),二次函數(shù)y=ax2+bx+c所對應(yīng)的函數(shù)值y是否大于0?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年河南省鄭州市董老師奧數(shù)二模試卷(1)(解析版) 題型:解答題

(2005•天津)已知二次函數(shù)y=ax2+bx+c.
(1)若a=2,c=-3,且二次函數(shù)的圖象經(jīng)過點(diǎn)(-1,-2),求b的值;
(2)若a=2,b+c=-2,b>c,且二次函數(shù)的圖象經(jīng)過點(diǎn)(p,-2),求證:b≥0;
(3)若a+b+c=0,a>b>c,且二次函數(shù)的圖象經(jīng)過點(diǎn)(q,-a),試問當(dāng)自變量x=q+4時(shí),二次函數(shù)y=ax2+bx+c所對應(yīng)的函數(shù)值y是否大于0?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年天津市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2005•天津)已知關(guān)于x的一次函數(shù)y=kx+1和反比例函數(shù)y=的圖象都經(jīng)過點(diǎn)(2,m).
(1)求一次函數(shù)的解析式;
(2)求這兩個(gè)函數(shù)圖象的另一個(gè)交點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案