如圖,∠ACB=∠ADC=90°,AC=,AD=2.問(wèn)當(dāng)AB的長(zhǎng)為多少時(shí),這兩個(gè)直角三角形相似.

【答案】分析:如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似.在Rt△ABC和Rt△ACD,直角邊的對(duì)應(yīng)需分情況討論.
解答:解:∵AC=,AD=2,
∴CD==.要使這兩個(gè)直角三角形相似,有兩種情況:
(1)當(dāng)Rt△ABC∽R(shí)t△ACD時(shí),有=,∴AB==3;
(2)當(dāng)Rt△ACB∽R(shí)t△CDA時(shí),有=,∴AB==3
故當(dāng)AB的長(zhǎng)為3或3時(shí),這兩個(gè)直角三角形相似.
點(diǎn)評(píng):本題考查相似三角形的判定.識(shí)別兩三角形相似,除了要掌握定義外,還要注意正確找出兩三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角,可利用數(shù)形結(jié)合思想根據(jù)圖形提供的數(shù)據(jù)計(jì)算對(duì)應(yīng)角的度數(shù)、對(duì)應(yīng)邊的比.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ACB中,∠ACB=90°,∠1=∠B.
(1)試說(shuō)明CD是△ABC的高;
(2)如果AC=8,BC=6,AB=10,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、如圖,∠ACB=90°,把Rt△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到Rt△AB1C1,若BC=1,AB=2,則∠CAB1的度數(shù)是
60
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ACB、△BDE和△DGF都是等邊三角形,且點(diǎn)E、G在△ABC邊AB的延長(zhǎng)線上,設(shè)等邊的面積分別為S1、S2、S3,若S1=9,S3=1,則S2=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,∠ACB=90°,AC=BC,BE⊥CE于點(diǎn)E,AD⊥CE于D,AD=5cm,DE=2.3cm,則BE的長(zhǎng)為
2.7cm
2.7cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,∠ACB=∠DBC,根據(jù)圖形條件,若增加一個(gè)條件
AC=BD
AC=BD
,就可使△ABC≌△DCB.

查看答案和解析>>

同步練習(xí)冊(cè)答案