如圖,已知拋物線y1=﹣2x2+2,直線y2=2x+2,當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1、y2.若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.例如:當(dāng)x=1時(shí),y1=0,y2=4,y1<y2,此時(shí)M=0.下列判斷:
①當(dāng)x>0時(shí),y1>y2; ②當(dāng)x<0時(shí),x值越大,M值越小;
③使得M大于2的x值不存在; ④使得M=1的x值是
其中正確的是( 。

A.①② B.①④ C.②③ D.③④

D.

解析試題分析:利用圖象與坐標(biāo)軸交點(diǎn)以及M值的取法,分別利用圖象進(jìn)行分析即可得出答案:
①∵當(dāng)x>0時(shí),利用函數(shù)圖象可以得出y2>y1. ∴此判斷錯(cuò)誤.
②∵拋物線y1=﹣2x2+2,直線y2=2x+2,當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1、y2
若y1≠y2,取y1、y2中的較小值記為M,
∴當(dāng)x<0時(shí),根據(jù)函數(shù)圖象可以得出x值越大,M值越大. ∴此判斷錯(cuò)誤.
③∵拋物線y1=﹣2x2+2,直線y2=2x+2,與y軸交點(diǎn)坐標(biāo)為:(0,2),
當(dāng)x=0時(shí),M=2,拋物線y1=﹣2x2+2,最大值為2,故M大于2的x值不存在,∴此判斷正確.
④∵使得M=1時(shí),
若y1=﹣2x2+2=1,解得:x1=,x2=﹣;若y2=2x+2=1,解得:x=﹣.
由圖象可得出:當(dāng)x=>0,此時(shí)對(duì)應(yīng)y1=M.
∵拋物線y1=﹣2x2+2與x軸交點(diǎn)坐標(biāo)為:(1,0),(﹣1,0),∴當(dāng)﹣1<x<0,此時(shí)對(duì)應(yīng)y2=M,
∴M=1時(shí),x=或x=﹣. ∴此判斷正確.
因此正確的有:③④. 故選D.
考點(diǎn):二次函數(shù)的圖象和性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:單選題

在反比例函數(shù)中,當(dāng)x>0時(shí),y隨x的增大而增大,則二次函數(shù)的圖象大致是圖中的(   )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

將拋物線先向上平移3個(gè)單位,再向左平移2個(gè)單位后得到的拋物線解析式為( )

A. B.
C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

下列函數(shù)有最大值的是 (    )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖所示,拋物線頂點(diǎn)坐標(biāo)是P(1,3),則函數(shù)y隨自變量x的增大而減小的x的取值范圍是(   )

A.x>3 B.x<3 C.x>1 D.x<1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

若二次函數(shù)的圖象經(jīng)過點(diǎn)P(-2,4),則該圖象必經(jīng)過點(diǎn)(      )

A.(2,4) B.(-2,-4) C.(-4,2) D.(4,-2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

二次函數(shù)的圖象如圖所示,有下列結(jié)論:
,②,③,④ ,⑤
其中正確的個(gè)數(shù)有(    )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,已知拋物線的對(duì)稱軸為,點(diǎn)A,B均在拋物線上,且與x軸平行,其中點(diǎn)的坐標(biāo)為(n,3),則點(diǎn)的坐標(biāo)為(    ).

A.(n+2,3)B.(,3)C.(,3)D.(,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

已知二次函數(shù),當(dāng)自變量x取m對(duì)應(yīng)的函數(shù)值大于0,設(shè)自變量分別取m-3,m+3 時(shí)對(duì)應(yīng)的函數(shù)值為y1,y2,則

A.y1>0,y2>0 B.y1>0,y2<0 C.y1<0,y2>0 D.y1<0,y2<0

查看答案和解析>>

同步練習(xí)冊(cè)答案