【題目】如圖,測(cè)量人員在山腳A處測(cè)得山頂B的仰角為45°,沿著仰角為30°的山坡前進(jìn)1000米到達(dá)D處,在D處測(cè)得山頂B的仰角為60°,求山的高度?
【答案】解:∵∠BAC=45°,∠DAC=30°,
∴∠BAD=15°,
∵∠BDE=60°,∠BED=90°,
∴∠DBE=30°,
∵∠ABC=45°,
∴∠ABD=15°,
∴∠ABD=∠DAB,
∴AD=BD=1000,
過(guò)點(diǎn)D作DF⊥AC,
∵AC⊥BC,DE⊥AC,DE⊥BC,
∴∠DFC=∠ACB=∠DEC=90°
∴四邊形DFCE是矩形
∴DF=CE
在直角三角ADF中,∵∠DAF=30°,
∴DF=AD=500,
∴EC=500,BE=1000×sin60°=500.
∴BC=500+500米.
【解析】根據(jù)題目所給的度數(shù)可判定△ABD是等腰三角形,AD=BD,然后解直角三角形,可求出BE的長(zhǎng)和CE的長(zhǎng),從而可求出山高的高度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小強(qiáng)從A處出發(fā)沿北偏東70°方向行走,走至B處,又沿著北偏西30°方向行走至C處,此時(shí)需把方向調(diào)整到與出發(fā)時(shí)一致,則方向的調(diào)整應(yīng)是( )
A. 左轉(zhuǎn) 80° B. 右轉(zhuǎn)80° C. 右轉(zhuǎn) 100° D. 左轉(zhuǎn) 100°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=3cm,BC=6cm.點(diǎn)P從點(diǎn)D出發(fā)向點(diǎn)A運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)A即停止;同時(shí),點(diǎn)Q從點(diǎn)B出發(fā)向點(diǎn)C運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)C即停止,點(diǎn)P、Q的速度都是1cm/s.連接PQ、AQ、CP.設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為ts.
當(dāng)t為何值時(shí),四邊形ABQP是矩形;
當(dāng)t為何值時(shí),四邊形AQCP是菱形;
分別求出(2)中菱形AQCP的周長(zhǎng)和面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:四邊形ABCD中,AB=2,CD=3,M、N分別是AD,BC的中點(diǎn),則線段MN的取值范圍是( 。
A. 1<MN<5 B. 1<MN≤5 C. <MN< D. <MN≤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“佳佳商場(chǎng)”在銷售某種進(jìn)貨價(jià)為20元/件的商品時(shí),以30元/件售出,每天能售出100件.調(diào)查表明:這種商品的售價(jià)每上漲1元/件,其銷售量就將減少2件.
(1)為了實(shí)現(xiàn)每天1600元的銷售利潤(rùn),“佳佳商場(chǎng)”應(yīng)將這種商品的售價(jià)定為多少?
(2)物價(jià)局規(guī)定該商品的售價(jià)不能超過(guò)40元/件,“佳佳商場(chǎng)”為了獲得最大的利潤(rùn),應(yīng)將該商品售價(jià)定為多少?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)口袋中有1個(gè)黑球和若干個(gè)白球,這些球除顏色外其他都相同.已知從中任意摸取一個(gè)球,摸得黑球的概率為 .
(1)求口袋中白球的個(gè)數(shù);
(2)如果先隨機(jī)從口袋中摸出一球,不放回,然后再摸出一球,求兩次摸出的球都是白球的概率.用列表法或畫樹(shù)狀圖法加以說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以O為圓心的弧BD度數(shù)為60°,∠BOE=45°,DA⊥OB,EB⊥OB.
(1)求的值;
(2)若OE與弧BD交于點(diǎn)M,OC平分∠BOE,連接CM.說(shuō)明CM為⊙O的切線;(3)在(2)的條件下,若BC=1,求tan∠BCO的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)的自變量滿足時(shí),函數(shù)值滿足,則該一次函數(shù)解析式為_____________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com