作業(yè)寶如圖,已知∠ACB=90°,CD是AB上的高,∠A=30°,AB=4cm,則:
(1)BC=______;
(2)∠BCD=______;
(3)BD=______;
(4)AD=______.

解:(1)∵∠ACB=90°,∠A=30°,AB=4cm,
∴BC=AB=×4=2cm;

(2)∵CD是AB上的高,
∴∠BCD+∠B=90°,
又∵∠A+∠B=90°,
∴∠BCD=∠A=30°;

(3)在Rt△BCD中,BD=BC=×2=1cm;

(4)AD=AB-BD=4-1=3cm.
故答案為:2cm,30°,1cm,3cm.
分析:(1)根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半可得BC=AB;
(2)根據(jù)同角的余角相等可得∠BCD=∠A;
(3)根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半可得BD=BC;
(4)根據(jù)AD=AB-BD代入數(shù)據(jù)計(jì)算即可得解.
點(diǎn)評(píng):本題考查了直角三角形30°角所對(duì)的直角邊等于斜邊的一半的性質(zhì),同角的余角相等的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知∠ACB=∠CBD=90°,BC=a,AC=b,當(dāng)CD=( 。⿻r(shí),△CDB∽△ABC.
A、
a2
b
B、
b2
a
C、
b
a
a2+b2
D、
a
b
a2+b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,已知∠ACB是⊙O的圓周角,∠ACB=40°,則圓心角∠AOB=
80
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知∠ACB=∠BDA=90°,要使△ABC≌△BAD,還需要添加一個(gè)條件,這個(gè)條件可以是
AC=BD
AC=BD
BC=AD
BC=AD
∠ABC=∠BAD
∠ABC=∠BAD
∠CAB=∠DBA
∠CAB=∠DBA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ACB與△DFE是兩個(gè)全等的直角三角形,量得它們的斜邊長為10cm,較小銳角為30°,將這兩個(gè)三角形擺成如圖(1)所示的形狀,使點(diǎn)B、C、F、D在同一條直線上,且點(diǎn)C與點(diǎn)F重合,將圖(1)中的△ACB繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)到圖(2)的位置,點(diǎn)E在邊AB上,AC交DE于點(diǎn)G,則線段FG的長為
5
3
2
5
3
2
cm(保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知∠ACB=90°,∠DAB=70°,AC平分∠DAB,∠1=35°.
①求∠B的度數(shù);   
②求證:AB∥CD.

查看答案和解析>>

同步練習(xí)冊(cè)答案