如圖,在Rt△AOB中,O為坐標(biāo)原點(diǎn),∠AOB=90°,∠B=30°.若點(diǎn)A在反比例函數(shù)y=數(shù)學(xué)公式(x>0)的圖象上運(yùn)動,點(diǎn)B在反比例函數(shù)y=數(shù)學(xué)公式(x>O)的圖象上運(yùn)動,則k=________.

-3
分析:如圖分別過A、B作AC⊥y軸于C,BD⊥y軸于D.設(shè)A(a,b),則ab=1.根據(jù)兩角對應(yīng)相等的兩三角形相似,得出△OAC∽△BOD,由相似三角形的對應(yīng)邊成比例,則BD、OD都可用含a、b的代數(shù)式表示,從而求出BD•OD的積,進(jìn)而得出結(jié)果.
解答:解:分別過A、B作AC⊥y軸于C,BD⊥y軸于D.設(shè)A(a,b).
∵點(diǎn)A在反比例函數(shù)y=(x>0)的圖象上,
∴ab=1.
在△OAC與△BOD中,∠AOC=90°-∠BOD=∠OBD,∠OCA=∠BDO=90°,
∴△OAC∽△BOD,
∴OC:BD=AC:OD=OA:OB,
在Rt△AOB中,∠AOB=90°,∠B=30°,
∴OA:OB=1:,
∴b:BD=a:OD=1:
∴BD=b,OD=a,
∴BD•OD=3ab=3,
又∵點(diǎn)B在第四象限,
∴k=-3.
故答案為:-3.
點(diǎn)評:本題考查的是反比例函數(shù)綜合題,涉及到相似三角形的判定與性質(zhì)、反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn)等知識,根據(jù)題意作出輔助線,構(gòu)造出相似三角形是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以點(diǎn)O為坐標(biāo)原點(diǎn)建立坐標(biāo)系,設(shè)P、Q精英家教網(wǎng)分別為AB、OB邊上的動點(diǎn)它們同時分別從點(diǎn)A、O向B點(diǎn)勻速運(yùn)動,速度均為1cm/秒,設(shè)P、Q移動時間為t(0≤t≤4)
(1)過點(diǎn)P做PM⊥OA于M,求證:AM:AO=PM:BO=AP:AB,并求出P點(diǎn)的坐標(biāo)(用t表示);
(2)求△OPQ面積S(cm2),與運(yùn)動時間t(秒)之間的函數(shù)關(guān)系式,當(dāng)t為何值時,S有最大值?最大是多少?
(3)當(dāng)t為何值時,△OPQ為直角三角形?
(4)證明無論t為何值時,△OPQ都不可能為正三角形.若點(diǎn)P運(yùn)動速度不變改變Q的運(yùn)動速度,使△OPQ為正三角形,求Q點(diǎn)運(yùn)動的速度和此時t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△AOB中,∠ABO=90°,OB=4,AB=8,且反比例函數(shù)y=
kx
在第一象限內(nèi)的圖象分別交OA、AB于點(diǎn)C和點(diǎn)D,連結(jié)OD,若S△BOD=4,
(1)求反比例函數(shù)解析式;
(2)求C點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•咸寧)如圖,在Rt△AOB中,OA=OB=3
2
,⊙O的半徑為1,點(diǎn)P是AB邊上的動點(diǎn),過點(diǎn)P作⊙O的一條切線PQ(點(diǎn)Q為切點(diǎn)),則切線PQ的最小值為
2
2
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•安溪縣質(zhì)檢)如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,將△AOB沿x軸依次以點(diǎn)A、B、O為旋轉(zhuǎn)中心從①的位置順時針旋轉(zhuǎn),分別得②、③、…,則:
(1)旋轉(zhuǎn)得到圖③的直角頂點(diǎn)的坐標(biāo)為
(12,0)
(12,0)
;
(2)旋轉(zhuǎn)得到圖⑩的直角頂點(diǎn)的坐標(biāo)為
(36,0)
(36,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南崗區(qū)一模)如圖,在Rt△AOB中,∠AOB=90°,且AO=8,BO=6,P是線段AB上一個動點(diǎn),PE⊥A0于E,PF⊥B0于F.設(shè)
PE=x,矩形PFOE的面積為S
(1)求出S與x的函數(shù)關(guān)系式;
(2)當(dāng)x為何值時,矩形PFOE的面積S最大?最大面積是多少?

查看答案和解析>>

同步練習(xí)冊答案