如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(﹣1,0),B(4,0),C(0,2)三點(diǎn).
(1)求這條拋物線的解析式;
(2)E為拋物線上一動點(diǎn),是否存在點(diǎn)E使以A、B、E為頂點(diǎn)的三角形與△COB相似?若存在,試求出點(diǎn)E的坐標(biāo);若不存在,請說明理由;
(3)若將直線BC平移,使其經(jīng)過點(diǎn)A,且與拋物線相交于點(diǎn)D,連接BD,試求出∠BDA的度數(shù).
解:(1)∵該拋物線過點(diǎn)C(0,2),
∴可設(shè)該拋物線的解析式為y=ax2+bx+2.
將A(﹣1,0),B(4,0)代入,
得 ,
解得 ,
∴拋物線的解析式為:y=﹣x2+x+2.
(2)存在.
由圖象可知,以A、B為直角頂點(diǎn)的△ABE不存在,所以△ABE只可能是以點(diǎn)E為直角頂點(diǎn)的三角形.
在Rt△BOC中,OC=2,OB=4,
∴BC==.
在Rt△BOC中,設(shè)BC邊上的高為h,則×h=×2×4,
∴h=.
∵△BEA∽△COB,設(shè)E點(diǎn)坐標(biāo)為(x,y),
∴=,∴y=±2
將y=2代入拋物線y=﹣x2+x+2,得x1=0,x2=3.
當(dāng)y=﹣2時,不合題意舍去.
∴E點(diǎn)坐標(biāo)為(0,2),(3,2).
(3)如圖2,連結(jié)AC,作DE⊥x軸于點(diǎn)E,作BF⊥AD于點(diǎn)F,
∴∠BED=∠BFD=∠AFB=90°.
設(shè)BC的解析式為y=kx+b,由圖象,得
,
∴,
yBC=﹣x+2.
由BC∥AD,設(shè)AD的解析式為y=﹣x+n,由圖象,得
0=﹣×(﹣1)+n
∴n=﹣,
yAD=﹣x﹣.
∴﹣x2+x+2=﹣x﹣,
解得:x1=﹣1,x2=5
∴D(﹣1,0)與A重合,舍去,D(5,﹣3).
∵DE⊥x軸,
∴DE=3,OE=5.
由勾股定理,得BD=.
∵A(﹣1,0),B(4,0),C(0,2),
∴OA=1,OB=4,OC=2.
∴AB=5
在Rt△AOC中,Rt△BOC中,由勾股定理,得
AC=,BC=2,
∴AC2=5,BC2=20,AB2=25,
∴AC2+BC2=AB2
∴△ACB是直角三角形,
∴∠ACB=90°.
∵BC∥AD,
∴∠CAF+∠ACB=180°,
∴∠CAF=90°.
∴∠CAF=∠ACB=∠AFB=90°,
∴四邊形ACBF是矩形,
∴AC=BF=,
在Rt△BFD中,由勾股定理,得DF=,
∴DF=BF,
∴∠ADB=45°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,AB是⊙O的直徑.OD垂直于弦AC于點(diǎn)E,且交⊙O于點(diǎn)D.F是BA延長線上一點(diǎn),若.
(1)求證:FD是⊙O的一條切線;
(2)若AB=10,AC=8,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
據(jù)威海市旅游局統(tǒng)計,今年“五一”小長假期間,我市各旅游景點(diǎn)門票收入約2300萬元,數(shù)據(jù)“2300萬“用科學(xué)記數(shù)法表示為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某學(xué)校為了解學(xué)生體能情況,規(guī)定參加測試的每名學(xué)生從“立定跳遠(yuǎn)”,“耐久跑”,“擲實(shí)心球”,“引體向上”四個項(xiàng)目中隨機(jī)抽取兩項(xiàng)作為測試項(xiàng)目.
(1)小明同學(xué)恰好抽到“立定跳遠(yuǎn)”,“耐久跑”兩項(xiàng)的概率是多少?
(2)據(jù)統(tǒng)計,初二三班共12名男生參加了“立定跳遠(yuǎn)”的測試,他們的成績?nèi)缦拢?/p>
95 100 90 82 90 65 89 74 75 93 92 85
①這組數(shù)據(jù)的眾數(shù)是 ,中位數(shù)是 ;
②若將不低于90分的成績評為優(yōu)秀,請你估計初二年級180名男生中“立定跳遠(yuǎn)”成績?yōu)閮?yōu)秀的學(xué)生約為多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在-2,1,2,1,4,6中正確的是( )
A.平均數(shù)3 B.眾數(shù)是-2 C.中位數(shù)是1 D.極差為8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)(0,),(3,4).
(1)求拋物線的表達(dá)式及對稱軸;
(2)設(shè)點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為,點(diǎn)是拋物線對稱軸上一動點(diǎn),記拋物線在,之間的部分為圖象(包含,兩點(diǎn)).若直線與圖象有公共點(diǎn),結(jié)合函數(shù)圖像,求點(diǎn)縱坐標(biāo)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com