【題目】骰子是一種特別的數(shù)字立方體(如圖),它符合規(guī)則:相對兩面的點數(shù)之和總是7,下面四幅圖中可以折成符合規(guī)則的骰子的是(  ).

A. B. C. D.

【答案】A

【解析】

正方體的表面展開圖,相對的面之間一定相隔一個正方形根據(jù)這一特點對各選項分析判斷后利用排除法求解

根據(jù)正方體的表面展開圖,相對的面之間一定相隔一個正方形

A.4點與3點是向?qū)γ?/span>,5點與2點是向?qū)γ?/span>,1點與6點是向?qū)γ?/span>,所以可以折成符合規(guī)則的骰子,故本選項正確;

B.1點與3點是向?qū)γ?/span>4點與6點是向?qū)γ?/span>,2點與5點是向?qū)γ?/span>所以不可以折成符合規(guī)則的骰子,故本選項錯誤

C.3點與4點是向?qū)γ?/span>,1點與5點是向?qū)γ?/span>,2點與6點是向?qū)γ?/span>所以不可以折成符合規(guī)則的骰子,故本選項錯誤;

D.1點與5點是向?qū)γ?/span>,3點與4點是向?qū)γ?/span>,2點與6點是向?qū)γ?/span>所以不可以折成符合規(guī)則的骰子,故本選項錯誤

故選A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O為直線AB上一點,∠BOC=α.

(1)α=40°,OD平分∠AOC,DOE=90°,如圖(a)所示,求∠AOE的度數(shù);

(2)若∠AOD=AOC,DOE=60°,如圖(b)所示,請用α表示∠AOE的度數(shù);

(3)若∠AOD=AOC,DOE=(n≥2,且n為正整數(shù)),如圖(c)所示,請用αn表示∠AOE的度數(shù)(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,A(6,a),B(b0),M(0,c)P點為y軸上一動點,且(b2)2+|a6|+0

(1)求點B、M的坐標;

(2)P點在線段OM上運動時,試問是否存在一個點P使SPAB13,若存在,請求出P點的坐標與AB的長度;若不存在,請說明理由.

(3)不論P點運動到直線OM上的任何位置(不包括點O、M),∠PAM、∠APB、∠PBO三者之間是否都存在某種固定的數(shù)量關系,如果有,請利用所學知識找出并證明;如果沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知 A=3x2+3y2﹣2xy,B=xy﹣2y2﹣2x2

求:(1)2A﹣3B.

(2)若|2x﹣3|=1,y2=9,|x﹣y|=y﹣x,求 2A﹣3B 的值.

(3)若 x=2,y=﹣4 時,代數(shù)式 ax3by+5=17,那么當 x=﹣4,y=﹣時,求代 數(shù)式 3ax﹣24by3+6 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個幾何體由幾個大小相同的小立方塊搭成,從正面和上面觀察這 個幾何體,看到的形狀都一樣(如圖所示).

(1)這個幾何體最少有多少個小立方塊,最多有多少個小立方塊;

(2)當擺放的小立方塊最多時,請畫出從左面觀察到的視圖.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A、B、C在數(shù)軸上表示的數(shù)分別為a、b、c,且OA+OB=OC,則下列結(jié)論中:

①abc<0;②a(b+c)>0;③a﹣c=b;④

其中正確的個數(shù)有 (  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=x2+bx+c與x軸只有一個交點,且圖象過A(x1 , m)、B(x1+n,m)兩點,則m、n的關系為(  )
A.m= n
B.m= n
C.m=
D.m=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:已知正方形的邊長為4,甲、乙兩動點分別從正方形ABCD的頂點A、C同時沿正方形的邊開始移動,甲點依順時針方向環(huán)行,乙點依逆時針方向環(huán)行,若乙的速度是甲的速度的3,則它們第2018次相遇在邊)上.

A. AB B. BC C. CD D. DA

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CD是一高為4米的平臺,AB是與CD底部相平的一棵樹,在平臺頂C點測得樹頂A點的仰角α=30°,從平臺底部向樹的方向水平前進3米到達點E,在點E處測得樹頂A點的仰角β=60°,求樹高AB(結(jié)果保留根號)

查看答案和解析>>

同步練習冊答案