如圖,△ABC內(nèi)接于⊙O,AD⊥BC于點(diǎn)D,AE是⊙O的直徑.
試判斷:∠BAE與∠CAD的大小關(guān)系,并說(shuō)明理由.
分析:首先連接BE,由AE是⊙O的直徑,根據(jù)直徑所對(duì)的圓周角是直角,可得∠ABE=90°,又由AD⊥BC,∠E=∠C,即可證得∠BAE=∠CAD.
解答:解:∠BAE=∠CAD.
理由:連接BE,
∵AE是⊙O的直徑,
∴∠ABE=90°,
∴∠BAE=90°-∠E,
∵AD⊥BC,
∴∠ADC=90°,
∴∠CAD=90°-∠C,
∵∠E=∠C,
∴∠BAE=∠CAD.
點(diǎn)評(píng):此題考查了圓周角定理.此題難度不大,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、如圖,△ABC內(nèi)接于⊙O,∠BAC=120°,AB=AC=4.BD為⊙O的直徑,則BD=
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,點(diǎn)D在AB的延長(zhǎng)線上,∠A=∠D=30°.
(1)判斷DC是否為⊙O的切線,并說(shuō)明理由;
(2)證明:△AOC≌△DBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,△ABC內(nèi)接于⊙O,連接AO并延長(zhǎng)交BC于點(diǎn)D,若AO=5,BC=8,∠ADB=90°,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,△ABC內(nèi)接于⊙O,∠A=30°,若BC=4cm,則⊙O的直徑為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC內(nèi)接于⊙O,AD⊥BC于點(diǎn)D,求證:∠BAD=∠CAO.

查看答案和解析>>

同步練習(xí)冊(cè)答案