如果0,那么的值是

[  ]
A.

6

B.

C.

D.

8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:新課標讀想練同步測試 八年級數(shù)學(xué)(下) 人教版 題型:013

如圖所示,△ABC是直角三角形,BC是斜邊,將△ABP繞點A逆時針旋轉(zhuǎn)后,能與△重合,如果AP=3,那么的長等于

[  ]

A.3

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1+1輕巧奪冠 同步講解 九年級數(shù)學(xué)(下) 華東師大版 題型:013

下列定理有逆定理的是

[  ]

A.如果a=b,那么a2=b2

B.對頂角相等

C.若三角形中有一角是鈍角,那么它的另兩個角是銳角

D.線段中垂線上的點到線段兩端點的距離相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年山東濟寧市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:013

如圖,△ABC是等腰直角三角形,BC是斜邊,將△ABP繞點A逆時針旋轉(zhuǎn)后,能與重合,如果AP=3,那么的長等于

[  ]

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年山東省青島市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:044

實際問題:某學(xué)校共有18個教學(xué)班,每班的學(xué)生數(shù)都是40人.為了解學(xué)生課余時間上網(wǎng)情況,學(xué)校打算做一次抽樣調(diào)查,如果要確保全校抽取出來的學(xué)生中至少有10人在同一班級,那么全校最少需抽取多少名學(xué)生?

建立模型:為解決上面的“實際問題”,我們先建立并研究下面從口袋中摸球的數(shù)學(xué)模型:

在不透明的口袋中裝有紅、黃、白三種顏色的小球各20個(除顏色外完全相同),現(xiàn)要確保從口袋中隨機摸出的小球至少有10個是同色的,則最少需摸出多少個小球?

為了找到解決問題的辦法,我們可把上述問題簡單化:

(1)我們首先考慮最簡單的情況:即要確保從口袋中摸出的小球至少有2個是同色的,則最少需摸出多少個小球?

假若從袋中隨機摸出3個小球,它們的顏色可能會出現(xiàn)多種情況,其中最不利的情況就是它們的顏色各不相同,那么只需再從袋中摸出1個小球就可確保至少有2個小球同色,即最少需摸出小球的個數(shù)是:1+3=4(如圖①);

(2)若要確保從口袋中摸出的小球至少有3個是同色的呢?

我們只需在(1)的基礎(chǔ)上,再從袋中摸出3個小球,就可確保至少有3個小球同色,即最少需摸出小球的個數(shù)是:1+3×2=7(如圖②)

(3)若要確保從口袋中摸出的小球至少有4個是同色的呢?

我們只需在(2)的基礎(chǔ)上,再從袋中摸出3個小球,就可確保至少有4個小球同色,即最少需摸出小球的個數(shù)是:1+3×3=10(如圖③):

……

(10)若要確保從口袋中摸出的小球至少有10個是同色的呢?

我們只需在(9)的基礎(chǔ)上,再從袋中摸出3個小球,就可確保至少有10個小球同色,即最少需摸出小球的個數(shù)是:1+3×(10-1)=28(如圖⑩)

模型拓展一:在不透明的口袋中裝有紅、黃、白、藍、綠五種顏色的小球各20個(除顏色外完全相同),現(xiàn)從袋中隨機摸球:

(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數(shù)是________;

(2)若要確保摸出的小球至少有10個同色,則最少需摸出小球的個數(shù)是________;

(3)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數(shù)是________

模型拓展二:在不透明口袋中裝有m種顏色的小球各20個(除顏色外完全相同),現(xiàn)從袋中隨機摸球:

(1)若要確保摸出的小球至少有2個同色,則最少需摸出小球的個數(shù)是________

(2)若要確保摸出的小球至少有n個同色(n<20),則最少需摸出小球的個數(shù)是________

問題解決:(1)請把本題中的“實際問題”轉(zhuǎn)化為一個從口袋中摸球的數(shù)學(xué)模型;

(2)根據(jù)(1)中建立的數(shù)學(xué)模型,求出全校最少需抽取多少名學(xué)生.

查看答案和解析>>

同步練習(xí)冊答案