【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點(diǎn)D,與CA的延長(zhǎng)線相交于點(diǎn)E,過(guò)點(diǎn)D作DF⊥AC于點(diǎn)F.
(1)試說(shuō)明DF是⊙O的切線;
(2)若AC=3AE=6,求tanC
【答案】(1)見(jiàn)解析(2)
【解析】
(1)連接OD,根據(jù)等邊對(duì)等角得出∠B=∠ODB,∠B=∠C,得出∠ODB=∠C,證得OD∥AC,證得OD⊥DF,從而證得DF是⊙O的切線;
(2)由AC=3AE可得AB=AC=3AE,EC=4AE;連結(jié)BE,由AB是直徑可知∠AEB=90°,根據(jù)勾股定理求出BE,解直角三角形求出即可.
(1)連接OD,
∵OB=OD,
∴∠B=∠ODB,
∵AB=AC,
∴∠B=∠C,
∴∠ODB=∠C,
∴OD∥AC,
∵DF⊥AC,
∴OD⊥DF,點(diǎn)D在⊙O上,
∴DF是⊙O的切線;
(2)連接BE,
∵AB是直徑,
∴∠AEB=90°,
∵AB=AC,AC=3AE,
∴AB=3AE,CE=4AE,
∴BE==2AE
在Rt△BEC中,tanC=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為落實(shí)素質(zhì)教育要求,促進(jìn)學(xué)生全面發(fā)展,我市某中學(xué)2014年投資11萬(wàn)元新增一批電腦,計(jì)劃以后每年以相同的增長(zhǎng)率進(jìn)行投資,2016年投資18.59萬(wàn)元.
(1)求該學(xué)校為新增電腦投資的年平均增長(zhǎng)率;
(2)從2014年到2016年,該中學(xué)三年為新增電腦共投資多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,直線AE:與拋物線相交于另一點(diǎn)E,點(diǎn)D為拋物線的頂點(diǎn).
(1)求直線BC的解析式及點(diǎn)E的坐標(biāo);
(2)如圖2,直線AE上方的拋物線上有一點(diǎn)P,過(guò)點(diǎn)P作PF⊥BC于點(diǎn)F,過(guò)點(diǎn)P作平行于軸的直線交直線BC于點(diǎn)G,當(dāng)△PFG周長(zhǎng)最大時(shí),在軸上找一點(diǎn)M,在AE上找一點(diǎn)N,使得值最小,請(qǐng)求出此時(shí)N點(diǎn)的坐標(biāo)及的最小值;
(3)在第(2)問(wèn)的條件下,點(diǎn)R為拋物線對(duì)稱(chēng)軸上的一點(diǎn),在平面直角坐標(biāo)系中是否存在點(diǎn)S,使以點(diǎn)N,E,R,S為頂點(diǎn)的四邊形為矩形,若存在,請(qǐng)直接寫(xiě)出點(diǎn)S的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與坐標(biāo)軸分別交于點(diǎn)A、B,與直線交于點(diǎn)C.在線段OA上,動(dòng)點(diǎn)Q以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)O出發(fā)向點(diǎn)A做勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)A出發(fā)向點(diǎn)O做勻速運(yùn)動(dòng),當(dāng)點(diǎn)P、Q其中一點(diǎn)停止運(yùn)動(dòng)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).分別過(guò)點(diǎn)P、Q作x軸的垂線,交直線AB、OC于點(diǎn)E、F,連接EF.若運(yùn)動(dòng)時(shí)間為t秒,在運(yùn)動(dòng)過(guò)程中四邊形PEFQ總為矩形(點(diǎn)P、Q重合除外)。
(1)求點(diǎn)P運(yùn)動(dòng)的速度是多少?
(2)當(dāng)t為多少秒時(shí),矩形PEFQ為正方形?
(3)當(dāng)t為多少秒時(shí),矩形PEFQ的面積S最大?并求出最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,矩形DEFG的頂點(diǎn)G、F分別在AC、BC上,DE在AB上.
(1)求證:△ADG∽△FEB;
(2)若AG=5,AD=4,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線是足球場(chǎng)的底線,是球門(mén),點(diǎn)是射門(mén)點(diǎn),連接,叫做射門(mén)角.
(1)如圖,點(diǎn)是射門(mén)點(diǎn),另一射門(mén)點(diǎn)在過(guò)三點(diǎn)的圓外(未超過(guò)底線).證明:
(2)如圖,經(jīng)過(guò)球門(mén)端點(diǎn),直線,垂足為且與相切與點(diǎn),于點(diǎn),連接,若,求此時(shí)一球員帶球沿直線向底線方向運(yùn)球時(shí)最大射門(mén)角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn)P,點(diǎn)P在第一象限.PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B.一次函數(shù)的圖象分別交軸、軸于點(diǎn)C、D,且S△PBD=4, .
(1)求點(diǎn)D的坐標(biāo);
(2)求一次函數(shù)與反比例函數(shù)的解析式;
(3)根據(jù)圖象寫(xiě)出當(dāng)時(shí),一次函數(shù)的值大于反比例函數(shù)的值的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),已知點(diǎn)G在正方形ABCD的對(duì)角線AC上,GE⊥BC,垂足為點(diǎn)E,GF⊥CD,垂足為點(diǎn)F.
(1)證明與推斷:
①求證:四邊形CEGF是正方形;
②推斷:的值為 :
(2)探究與證明:
將正方形CEGF繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關(guān)系,并說(shuō)明理由:
(3)拓展與運(yùn)用:
正方形CEGF在旋轉(zhuǎn)過(guò)程中,當(dāng)B,E,F(xiàn)三點(diǎn)在一條直線上時(shí),如圖(3)所示,延長(zhǎng)CG交AD于點(diǎn)H.若AG=6,GH=2,則BC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】基本事實(shí):“若ab=0,則a=0或b=0”.一元二次方程x2-x-2=0可通過(guò)因式分解化為(x-2)(x+1)=0,由基本事實(shí)得x-2=0或x+1=0,即方程的解為x=2或x=-1.
(1)、試?yán)蒙鲜龌臼聦?shí),解方程:2x2-x=0:
(2)、若(x2+y2)(x2+y2-1)-2=0,求x2+y2的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com