【題目】某同學(xué)要證明命題平行四邊形的對(duì)邊相等.是正確的,他畫出了圖形,并寫出了如下已知和不完整的求證.

已知:如圖,四邊形ABCD是平行四邊形.

求證:AB=CD,

(1)補(bǔ)全求證部分;

(2)請(qǐng)你寫出證明過程.

【答案】1BC=DA;2證明過程見解析

【解析】

試題分析:1根據(jù)題意容易得出結(jié)論;2連接AC,與平行四邊形的性質(zhì)得出ABCD,ADBC,證出BAC=DCA,BCA=DAC,由ASA證明ABC≌△CDA,得出對(duì)應(yīng)邊相等即可.

試題解析:(1)、BC=DA;

2連接AC,如圖所示: 四邊形ABCD是平行四邊形, ABCD,ADBC,

∴∠BAC=DCA,BCA=DAC,

ABC和CDA中,, ∴△ABC≌△CDA(ASA), AB=CD,BC=DA;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在直角坐標(biāo)系中,一次函數(shù)的圖象ly軸交于點(diǎn)A0 , 2),與一次函數(shù)yx3的圖象l交于點(diǎn)Em ,5).

1m=__________;

2)直線lx軸交于點(diǎn)B,直線ly軸交于點(diǎn)C,求四邊形OBEC的面積;

3)如圖2,已知矩形MNPQ,PQ2,NP1,Ma,1),矩形MNPQ的邊PQx軸上平移,若矩形MNPQ與直線ll有交點(diǎn),直接寫出a的取值范圍_____________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【閱讀理解】對(duì)于任意正實(shí)數(shù)ab,因?yàn)?/span>≥0,所以 ≥0,所以≥2,只有當(dāng)時(shí),等號(hào)成立.

【獲得結(jié)論】在≥2a、b均為正實(shí)數(shù))中,若為定值,則≥2,只有當(dāng)時(shí), 有最小值2

根據(jù)上述內(nèi)容,回答下列問題:若>0,只有當(dāng)= 時(shí), 有最小值

【探索應(yīng)用】如圖,已知A(-3,0),B0,-4),P為雙曲線0上的任意一點(diǎn),過點(diǎn)PPCx軸于點(diǎn)C,PDy軸于點(diǎn)D.求四邊形ABCD面積的最小值,并說明此時(shí)四邊形ABCD的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將四張邊長各不相同的正方形紙片按如圖方式放入矩形ABCD內(nèi)(相鄰紙片之間互不重疊也無縫隙),未被四張正方形紙片覆蓋的部分用陰影表示,設(shè)右上角與左下角陰影部分的周長的差為l.若知道l的值,則不需要測量就能知道周長的正方形的標(biāo)號(hào)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法解下列方程時(shí),配方錯(cuò)誤的是( 。

A. x2+2x﹣99=0化為(x+12=100

B. 2x27x4=0化為

C. x2+8x+9=0化為(x+42=25

D. 3x24x2=0化為(x-

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在∠AA90°)的內(nèi)部畫線段,并使線段的兩端點(diǎn)分別落在角的兩邊ABAC上,如圖所示,從點(diǎn)A1開始,依次向右畫線段,使線段與線段在兩端點(diǎn)處互相垂直,A1A2為第1條線段.設(shè)AA1=A1A2=A2A3=1,則∠A =_____若記線段A2n-1A2n的長度為ann為正整數(shù)),如A1A2=a1,A3A4=a2,則此時(shí)a2=_______,an=________(用含n的式子表示.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知M=(a24x310x210x5是關(guān)于x的二次多項(xiàng)式,且二次項(xiàng)系數(shù)和一次項(xiàng)系數(shù)分別為bc,在數(shù)軸上A、B、C三點(diǎn)所對(duì)應(yīng)的數(shù)分別是a、bc

1)則a ,b ,c

2)有一動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒4個(gè)單位的速度向右運(yùn)動(dòng),多少秒后,PAB、C的距離和為40個(gè)單位?

3)在(2)的條件下,當(dāng)點(diǎn)P移動(dòng)到點(diǎn)B時(shí)立即掉頭,速度不變,同時(shí)點(diǎn)T和點(diǎn)Q分別從點(diǎn)A和點(diǎn)C出發(fā),向左運(yùn)動(dòng),點(diǎn)T的速度1個(gè)單位/秒,點(diǎn)Q的速度5個(gè)單位/秒,設(shè)點(diǎn)P、Q、T所對(duì)應(yīng)的數(shù)分別是xPxQ、xT,點(diǎn)Q出發(fā)的時(shí)間為t,當(dāng)t時(shí),求2|xPxT||xTxQ|2|xQxP|的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形BFEC中,連接FC,并延長至點(diǎn)D,延長CF至點(diǎn)A,使DCAF,連接AB、DE

1)求證:ABDE

2)若平行四邊形BFEC是菱形,且∠ABC90°,AB4,BC3,則CF   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算,適當(dāng)寫出運(yùn)算過程

(1) ;

(2)

(3)

(4)

(5)

(6)

查看答案和解析>>

同步練習(xí)冊(cè)答案