如圖,用三個(gè)一樣的菱形ABGH、BCFG、CDEF拼成平行四邊形ADEH,連接AE,與BG、CF分別交于P、Q.
(1)若AB=9,求線段BP的長(zhǎng);
(2)觀察圖形,是否有三角形與△ACQ全等?并證明你的結(jié)論.

【答案】分析:(1)可通過證△ABP∽△ADE,得出關(guān)于線段BP的比例關(guān)系,然后根據(jù)已知條件去求BP的值;
(2)根據(jù)菱形的性質(zhì)及全等三角形的判定方法進(jìn)行分析,從而不難得到答案.
解答:解:(1)∵菱形ABGH、BCFG、CDEF是全等菱形,
∴BC=CD=DE=AB=9,
∴AD=3AB=3×9=27,
∵BG∥DE,
∴∠ABG=∠D,∠APB=∠AED,
∴△ABP∽△ADE,
,
∴BP=•DE=×9=3;

(2)圖中的△EGP與△ACQ全等.
∵菱形ABGH、BCFG、CDEF是全等的菱形,
∴AB=BC=EF=FG,
∴AB+BC=EF+FG,
∴AC=EG,
∵AD∥HE,
∴∠1=∠2,
∵BG∥CF,
∴∠3=∠4,
∴△EGP≌△ACQ.
點(diǎn)評(píng):此題考查全等三角形的判定,相似三角形的性質(zhì)及菱形的性質(zhì)等知識(shí)點(diǎn)的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,用三個(gè)一樣的菱形ABGH、BCFG、CDEF拼成平行四邊形ADEH,連接精英家教網(wǎng)AE,與BG、CF分別交于P、Q.
(1)若AB=9,求線段BP的長(zhǎng);
(2)觀察圖形,是否有三角形與△ACQ全等?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•長(zhǎng)春一模)如圖,在4×4的菱形斜網(wǎng)格圖中(每一個(gè)小菱形的邊長(zhǎng)為1,有一個(gè)角是60°),菱形ABCD的邊長(zhǎng)為2,E是AD的中點(diǎn),沿著CE將菱形ABCD剪成①、②兩部分,用這兩部分可以分別拼成直角三角形、等腰梯形、矩形,請(qǐng)?jiān)趫D中分別用實(shí)線畫出拼接后②的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,用火柴棒擺菱形,請(qǐng)你通過觀察探究:菱形的個(gè)數(shù)的增長(zhǎng)規(guī)律與火柴棒的根數(shù)的增長(zhǎng)規(guī)律.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,用三個(gè)一樣的菱形ABGH、BCFG、CDEF拼成平行四邊形ADEH,連接AE,與BG、CF分別交于P、Q.
(1)若AB=9,求線段BP的長(zhǎng);
(2)觀察圖形,是否有三角形與△ACQ全等?并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案