如圖,在等腰△ABC中,∠BAC=120°,DE是AC的垂直平分線,DE=1cm,求BD的長.
分析:連接AD,根據(jù)等腰三角形兩底角相等求出∠B=∠C=30°,根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得AD=CD,根據(jù)等邊對等角求出∠DAC=∠C=30°,然后求出∠BAD=90°,再根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半解答即可.
解答:解:如圖,連接AD,
∵等腰△ABC中,∠BAC=120°,
∴∠B=∠C=
1
2
(180°-120°)=30°,
∵DE是AC的垂直平分線,
∴AD=CD,
∴∠DAC=∠C=30°,
∴∠BAD=∠BAC-∠DAC=120°-30°=90°,
在Rt△CDE中,∵DE=1cm,
∴CD=2DE=2cm,
在Rt△ABD中,BD=2AD=2CD=2×2=4cm.
點評:本題考查了線段垂直平分線上的點到線段兩端點的距離相等的性質(zhì),直角三角形30°角所對的直角邊等于斜邊的一半的性質(zhì),等邊對等角,連接AD,構(gòu)造出等腰三角形與直角三角形是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在等腰△ABC中,AB=AC,BE⊥AC,垂足為E,則∠1與∠A的關(guān)系式為(  )
A、∠1=∠A
B、∠1=
1
2
∠A
C、∠1=2∠A
D、無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在等腰△ABC中,AB=AC,AB的垂直平分線DE交AB于點D,交另一腰AC于點E,若∠EBC=15°,則∠A=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、如圖,在等腰△ABC中,AB=AC,∠ABC=α,在四邊形BDEC中,DB=DE,∠BDE=2α,M為CE的中點,連接AM,DM.
(1)在圖中畫出△DEM關(guān)于點M成中心對稱的圖形;
(2)求證AM⊥DM;
(3)當α=
45°
,AM=DM.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•麗水)如圖,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分線與AB的中垂線交于點O,點C沿EF折疊后與點O重合,則∠CEF的度數(shù)是
50°
50°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等腰△ABC中,AB=AC=10cm,直線DE垂直平分AB,分別交AB、AC于D、E兩點.若BC=8cm,則△BCE的周長是
18
18
cm.

查看答案和解析>>

同步練習冊答案