【題目】如圖1,在平整的地面上,用若干個(gè)棱長(zhǎng)完全相同的小正方體堆成一個(gè)幾何體.

(1)請(qǐng)畫出這個(gè)幾何體的三視圖;

(2)如圖2,如果現(xiàn)在你手頭還有一些相同的小正方體,要求保持俯視圖和左視圖不變,最多可以再添加幾個(gè)小正方體;

(3)若在這個(gè)幾何體的表面噴上黃色的漆(靠地面的一面不噴),有________個(gè)正方體只有一個(gè)面是黃色,有________個(gè)正方體三個(gè)面是黃色.

【答案】(1)詳見解析;(2)最多可再添加4個(gè)小正方體;(21,3.

【解析】

1)主視圖有三列,每列小正方形數(shù)目分別是3,1,2;左視圖有三列,每列小正方形數(shù)目分別為3,2,1;俯視圖有三列,每列小正方形數(shù)目分別為32,1,據(jù)此可畫出圖形.

2)保持俯視圖和左視圖不變,在第二層第二列第二行和第三行各加一個(gè);第三層第二列第三行加一個(gè),第三列第三行加1個(gè),相加可求出.

(3)只有一個(gè)面是黃色的是第一列正方體中最底層中間的正方體,只有三個(gè)面是黃色的是第一列第二層最后面的正方體,第二列最前面的正方體,第三列最底層的正方體.

解:(1)如圖所示:

(2)在第二層第二列第二行和第三行各加一個(gè);第三層第二列第三行加一個(gè),第三列第三行加1個(gè),2114(個(gè)).故最多可再添加4個(gè)小正方體. 

(3) 只有一個(gè)面是黃色的是第一列正方體中最底層中間的正方體,只有三個(gè)面是黃色的是第一列第二層最后面的正方體,第二列最前面的正方體,第三列最底層的正方體,故答案為13.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長(zhǎng)都為的大正方形,兩塊是邊長(zhǎng)都為的小正方形,五塊是長(zhǎng)為、寬為的全等小矩形,且> .(以上長(zhǎng)度單位:cm)

(1)觀察圖形,可以發(fā)現(xiàn)代數(shù)式可以因式分解為 ;

(2)若每塊小矩形的面積為10,四個(gè)正方形的面積和為58,試求圖中所有裁剪線(虛線部分)長(zhǎng)之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2011山東濟(jì)南,22,3分)如圖1,△ABC中,∠C=90°,∠ABC=30°AC=m,延長(zhǎng)CB至點(diǎn)D,使BD=AB

∠D的度數(shù);

tan75°的值.

2)如圖2,點(diǎn)M的坐標(biāo)為(2,0),直線MNy軸的正半軸交于點(diǎn)N∠OMN=75°.求直線MN的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A(﹣1,0)和C0,3).(1)求拋物線的解析式;(2)在拋物線的對(duì)稱軸上,是否存在點(diǎn)P,使PA+PC的值最小?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo),如果不存在,請(qǐng)說明理由;(3)設(shè)點(diǎn)M在拋物線的對(duì)稱軸上,當(dāng)△MAC是直角三角形時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AO的半徑,AC的弦,點(diǎn)F的中點(diǎn),OFAC于點(diǎn)E,AC=8EF=2

1)求AO的長(zhǎng);

2)過點(diǎn)CCDAO,交AO延長(zhǎng)線于點(diǎn)D,求sinACD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某民俗村為了維護(hù)消費(fèi)者利益,限定村內(nèi)所有商品的利潤(rùn)率不得超過,村內(nèi)一商店以每件16元的價(jià)格購(gòu)進(jìn)一批商品,該商品每件售價(jià)定為x元,每天可賣出件,每天銷售該商品所獲得的利潤(rùn)為y元.

yx的函數(shù)關(guān)系式;

若每天銷售該商品要獲得280元的利潤(rùn),每件商品的售價(jià)應(yīng)定為多少元?

求商店每天銷售該商品可獲得的最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,正三角形和正方形內(nèi)接于同一個(gè)圓;如圖②,正方形和正五邊形內(nèi)接于同一個(gè)圓;如圖③,正五邊形和正六邊形內(nèi)接于同一個(gè)圓;;則對(duì)于圖①來說,BD可以看作是正_____邊形的邊長(zhǎng);若正n邊形和正(n+1)邊形內(nèi)接于同一個(gè)圓,連接與公共頂點(diǎn)相鄰?fù)瑐?cè)兩個(gè)不同正多邊形的頂點(diǎn)可以看做是_____邊形的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)yax2+bx+ca≠0)的對(duì)稱軸為直線x=﹣1,圖象經(jīng)過B(﹣3,0)、C0,3)兩點(diǎn),且與x軸交于點(diǎn)A

1)求二次函數(shù)yax2+bx+ca≠0)的表達(dá)式;

2)在拋物線的對(duì)稱軸上找一點(diǎn)M,使ACM周長(zhǎng)最短,求出點(diǎn)M的坐標(biāo);

3)若點(diǎn)P為拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),直接寫出使BPC為直角三角形時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD,動(dòng)點(diǎn)E在AC上,AF⊥AC,垂足為A,AF=AE.

(1)BF和DE有怎樣的數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論;

(2)在其他條件都保持不變的是情況下,當(dāng)點(diǎn)E運(yùn)動(dòng)到AC中點(diǎn)時(shí),四邊形AFBE是什么特殊四邊形?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案