讓我們一起來探索平面直角坐標(biāo)系中平行四邊形的頂點的坐標(biāo)之間的關(guān)系。
第一步:數(shù)軸上兩點連線的中點表示的數(shù)
自己畫一個數(shù)軸,如果點A、B分別表示-2、4,則線段AB的中點M表示的數(shù)是
。 再試幾個,我們發(fā)現(xiàn):
數(shù)軸上連結(jié)兩點的線段的中點所表示的數(shù)是這兩點所表示數(shù)的平均數(shù)。
第二步;平面直角坐標(biāo)系中兩點連線的中點的坐標(biāo)(如圖①)
為便于探索,我們在第一象限內(nèi)取兩點A(x
1,y
1),B(x
2,y
2),取線段AB的中點M,分別作A、B到x軸的垂線段AE、BF,取EF的中點N,則MN是梯形AEFB的中位線,故MN⊥x軸,利用第一步的結(jié)論及梯形中位線的性質(zhì),我們可以得到點M的坐標(biāo)是(
,
)(用x
1,y
1,x
2,y
2表示),AEFB是矩形時也可以。我們的結(jié)論是:平面直角坐標(biāo)系中連結(jié)兩點的線段的中點的橫(縱)坐標(biāo)等于這兩點的橫(縱)坐標(biāo)的平均數(shù)。
圖① 圖②
第三步:平面直角坐標(biāo)系中平行四邊形的頂點坐標(biāo)之間的關(guān)系(如圖②)
在平面直角坐標(biāo)系中畫一個平行四邊形ABCD,設(shè)A(x
1,y
1),B(x
2,y
2),C(x
3,y
3),
D(x
4,y
4),則其對角線交點Q的坐標(biāo)可以表示為Q(
,
),也可以表示為Q(
,
),經(jīng)過比較,我們可以分別得出關(guān)于x
1,x
2,x
3,x
4及,y
1,y
2,y
3,y
4的兩個等式是
和
。 我們的結(jié)論是:平面直角坐標(biāo)系中平行四邊形的對角頂點的橫(縱)坐標(biāo)的
。