(2013•重慶) 如圖,P是⊙O外一點(diǎn),PA是⊙O的切線,PO=26cm,PA=24cm,則⊙O的周長(zhǎng)為( 。
分析:如圖,連接OA,根據(jù)切線的性質(zhì)證得△AOP是直角三角形,由勾股定理求得OA的長(zhǎng)度,然后利用圓的周長(zhǎng)公式來(lái)求⊙O的周長(zhǎng).
解答:解:如圖,連接OA.

∵PA是⊙O的切線,
∴OA⊥AP,即∠OAP=90°.
又∵PO=26cm,PA=24cm,
∴根據(jù)勾股定理,得
OA=
PO2-PA2
=
262-242
=10cm,
∴⊙O的周長(zhǎng)為:2π•OA=2π×10=20π(cm).
故選C.
點(diǎn)評(píng):本題考查了切線的性質(zhì)和勾股定理.運(yùn)用切線的性質(zhì)來(lái)進(jìn)行計(jì)算或論證,常通過(guò)作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•重慶)某屆青年歌手大獎(jiǎng)賽上,七位評(píng)委為甲選手打出的分?jǐn)?shù)分別是:96.5,97.1,97.5,98.1,98.1,98.3,98.5.則這組數(shù)據(jù)的眾數(shù)是
98.1
98.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•重慶)如圖,一個(gè)圓心角為90°的扇形,半徑OA=2,那么圖中陰影部分的面積為(結(jié)果保留π)
π-2
π-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•重慶)為了貫徹落實(shí)國(guó)家關(guān)于增強(qiáng)青少年體質(zhì)的計(jì)劃,重慶市全面實(shí)施了義務(wù)教育學(xué)段中小學(xué)學(xué)生“飲用奶計(jì)劃”的營(yíng)養(yǎng)工程.某牛奶供應(yīng)商似提供A(原味)、B(草莓味)、C(核桃味)、D(菠蘿味)、E(香橙味)等五種口味的學(xué)生奶供學(xué)生選擇(所有學(xué)生奶盒形狀、大小相同),為了了解對(duì)學(xué)生奶口味的喜好情況,某初級(jí)中學(xué)九年級(jí)(1)班張老師對(duì)全班同學(xué)進(jìn)行了調(diào)查統(tǒng)計(jì),制成了如下兩幅不完整的統(tǒng)計(jì)圖:

(1)該班五種口味的學(xué)生奶喜好人數(shù)組成一組統(tǒng)計(jì)數(shù)據(jù),直接寫(xiě)出這組數(shù)據(jù)的平均數(shù),并將折線統(tǒng)計(jì)圖補(bǔ)充完整;
(2)在進(jìn)行調(diào)查統(tǒng)計(jì)的第二天,張老師為班上每位同學(xué)發(fā)放一盒學(xué)生奶,喜好B味的小明和喜好C味的小剛等四位同學(xué)最后領(lǐng)取,剩余的學(xué)生奶放在同一紙箱里,分別有B味2盒,C味和D味各1盒,張老師從該紙箱里隨機(jī)取出兩盒學(xué)生奶.請(qǐng)你用列表法或畫(huà)樹(shù)狀圖的方法,求出這兩盒牛奶恰好同時(shí)是小明和小剛喜好的學(xué)生奶的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•重慶)如圖,已知拋物線y=x2+bx+c的圖象與x軸的一個(gè)交點(diǎn)為B(5,0),另一個(gè)交點(diǎn)為A,且與y軸交于點(diǎn)C(0,5).
(1)求直線BC與拋物線的解析式;
(2)若點(diǎn)M是拋物線在x軸下方圖象上的一動(dòng)點(diǎn),過(guò)點(diǎn)M作MN∥y軸交直線BC于點(diǎn)N,求MN的最大值;
(3)在(2)的條件下,MN取得最大值時(shí),若點(diǎn)P是拋物線在x軸下方圖象上任意一點(diǎn),以BC為邊作平行四邊形CBPQ,設(shè)平行四邊形CBPQ的面積為S1,△ABN的面積為S2,且S1=6S2,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•重慶)已知,在矩形ABCD中,E為BC邊上一點(diǎn),AE⊥DE,AB=12,BE=16,F(xiàn)為線段BE上一點(diǎn),EF=7,連接AF.如圖1,現(xiàn)有一張硬質(zhì)紙片△GMN,∠NGM=90°,NG=6,MG=8,斜邊MN與邊BC在同一直線上,點(diǎn)N與點(diǎn)E重合,點(diǎn)G在線段DE上.如圖2,△GMN從圖1的位置出發(fā),以每秒1個(gè)單位的速度沿EB向點(diǎn)B勻速移動(dòng),同時(shí)點(diǎn)P從A點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿AD向點(diǎn)D勻速移動(dòng),點(diǎn)Q為直線GN與線段AE的交點(diǎn),連接PQ.當(dāng)點(diǎn)N到達(dá)終點(diǎn)B時(shí),△GMN和點(diǎn)P同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,解答下列問(wèn)題:

(1)在整個(gè)運(yùn)動(dòng)過(guò)程中,當(dāng)點(diǎn)G在線段AE上時(shí),求t的值;
(2)在整個(gè)運(yùn)動(dòng)過(guò)程中,是否存在點(diǎn)P,使△APQ是等腰三角形?若存在,求出t的值;若不存在,說(shuō)明理由;
(3)在整個(gè)運(yùn)動(dòng)過(guò)程中,設(shè)△GMN與△AEF重疊部分的面積為S.請(qǐng)直接寫(xiě)出S與t之間的函數(shù)關(guān)系式以及自變量t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案