【題目】已知拋物線的頂點為(1,﹣4),且過點(﹣2,5).

(1)求拋物線解析式;

(2)直接寫出當函數(shù)值y>0時,自變量x的取值范圍.

【答案】(1)y=(x﹣1)2﹣4;(2)x<﹣1或x>3.

【解析】試題分析:

1)由已知可設拋物線解析式為: ,代入點(-2,5)即可解得的值,從而可求得拋物線的解析式;

2)在(1)中所得拋物線的解析式中,由可得一元二次方程,解方程即可求得對應的的值,結合拋物線的開口方向,即可求得時,自變量的取值范圍.

試題解析

(1)由已知可設拋物線解析式為: ,

把點(﹣25)代入得:

解得: ,

故拋物線解析式為: ;

(2)在中,由可得, ,

解得: ,

故拋物線與軸的交點為:(﹣1,0),(30),

,

∴拋物線的開口向上,

∴當函數(shù)值時,自變量的取值范圍為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】亞奧理事會于3日在土庫曼斯坦阿什哈巴德舉行第屆代表大會,并在會上投票選出年第屆亞運會舉辦城市為杭州.個城市的國際標準時間(單位:時)在數(shù)軸上表示如圖所示,那么北京時間時應是( ).

A.倫敦時間

B.巴黎時間

C.智利時間

D.曼谷時間

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=BD,點E、F分別在BC、CD上,且BE=CF,連接BF、DE交于點M,延長ED到H使DH=BM,連接AM,AH,則以下四個結論:

①△BDF≌△DCE;②∠BMD=120°;③△AMH是等邊三角形;④S四邊形ABCD= AM2

其中正確結論的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經過點(﹣1,0),對稱軸l如圖所示,則下列結論:abc>0;a﹣b+c=0;2a+c<0;a+b<0,其中所有正確的結論是(

A.①③ B.②③ C.②④ D.②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,ECD邊上一點,

(1)將ADE繞點A按順時針方向旋轉,使AD、AB重合,得到ABF,如圖1所示.觀察可知:與DE相等的線段是   ,AFB=   

(2)如圖2,正方形ABCD中,P、Q分別是BC、CD邊上的點,且∠PAQ=45°,試通過旋轉的方式說明:DQ+BP=PQ;

(3)在(2)題中,連接BD分別交AP、AQM、N,你還能用旋轉的思想說明BM2+DN2=MN2嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】目前節(jié)能燈在城市已基本普及,為響應號召,某商場計劃購進甲,乙兩種節(jié)能燈共200只,這兩種節(jié)能燈的進價、售價如下表:

進價(元/只)

售價(元/只)

甲型

20

30

乙型

30

45

1)若購進甲,乙兩種節(jié)能燈共用去5200元,求甲、乙兩種節(jié)能燈各進多少只?

2)若商場準備用不多于5400元購進這兩種節(jié)能燈,問甲型號的節(jié)能燈至少進多少只?

3)在(2)的條件下,該商場銷售完200只節(jié)能燈后能否實現(xiàn)盈利超過2690元的目標?若能請你給出相應的采購方案;若不能說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于的一元二次方程

1)若此方程的一個根為1,求的值;

2)求證:不論取何實數(shù),此方程都有兩個不相等的實數(shù)根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2、正方形AnBnnCn1按如圖方式放置,點A1、A2、A3、…在直線yx+1上,點C1C2、C3、…在x軸上.已知A1點的坐標是(0,1),則點B3的坐標為_____,點Bn的坐標是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】體育課上,七年級某班男同學進行了100米測驗,達標成績?yōu)?/span>15秒,下表是夢想小組8名男生的成績記錄,其中“+”表示成績大于15秒.

0.8

+1

1.2

0

0.7

+0.6

0.4

0.1

問:(1)這個小組男生的達標率為多少?(達標率=

2)這個小組男生的平均成績是多少秒?

查看答案和解析>>

同步練習冊答案