【題目】如圖,已知二次函數(shù)L1:y=ax2-2ax+a+3(a>0)和二次函數(shù)L2:y=-a(x+1)2+1(a>0)圖象的頂點(diǎn)分別為M,N,與y軸分別交于點(diǎn)E,F(xiàn).

(1)函數(shù)y=ax2-2ax+a+3(a>0)的最小值為  , 當(dāng)二次函數(shù)L1 , L2的y值同時(shí)隨著x的增大而減小時(shí),x的取值范圍是
(2)當(dāng)EF=MN時(shí),求a的值,并判斷四邊形ENFM的形狀(直接寫(xiě)出,不必證明).
(3)若二次函數(shù)L2的圖象與x軸的右交點(diǎn)為A(m,0),當(dāng)△AMN為等腰三角形時(shí),求方程-a(x+1)2+1=0的解.

【答案】
(1)3;﹣1≤x≤1
(2)

解:由二次函數(shù)L1:y=ax2-2ax+a+3可知E(0,a+3),

由二次函數(shù)L2:y=-a(x+1)2+1=﹣a2x-2ax-a+1可知F(0,-a+1),

∵M(jìn)(1,3),N(-1,1),

∴EF=MN==2,

∴a+3-(-a+1)=2,

∴a=-1,

作MG⊥y軸于G,則MG=1,作NH⊥y軸于H,則NH=1,

∴MG=NH=1,

∵EG=a+3-3=a,F(xiàn)H=1-(-a+1)=a,

∴EG=FH,

在△EMG和△FNH中,

∴△EMG≌△FNH(SAS),

∴∠MEF=∠NFE,EM=NF,

∴EM∥NF,

∴四邊形ENFM是平行四邊形;

∵EF=MN,

∴四邊形ENFM是矩形


(3)

解:由△AMN為等腰三角形,可分為如下三種情況:

①如圖2,

當(dāng)MN=NA=2時(shí),過(guò)點(diǎn)N作ND⊥x周,垂足為點(diǎn)D,則有ND=1,DA=m-(-1)=m+1,

在Rt△NDA中,NA2=DA2+ND2,即(22=(m+1)2+12,

∴m1=-1,m2=--1(不合題意,舍去),

∴A(-1,0).

由拋物線y=-a(x+1)2+1(a>0)的對(duì)稱(chēng)軸為x=-1,

∴它與x軸的另一個(gè)交點(diǎn)坐標(biāo)為(-1-,0).

∴方程-a(x+1)2+1=0的解為x1=﹣1,x2=-1-

②如圖3,

當(dāng)MA=NA時(shí),過(guò)點(diǎn)M作MG⊥x軸,垂足為G,則有OG=1,MG=3,GA=|m-1|,

∴在Rt△MGA中,MA2=MG2+GA2,即MA2=32+(m-1)2,

又∵NA2=(m+1)2+12

∴(m+1)2+12=32+(m-1)2,m=2,

∴A(2,0),

則拋物線y=-a(x+1)2+1(a>0)的左交點(diǎn)坐標(biāo)為(-4,0),

∴方程-a(x+1)2+1=0的解為x1=2,x2=-4.

③當(dāng)MN=MA時(shí),32+(m-1)2=(22

∴m無(wú)實(shí)數(shù)解,舍去.

綜上所述,當(dāng)△AMN為等腰三角形時(shí),方程-a(x+1)2=0的解為

x1=-1,x2=-1-或x1=2,x2=-4.


【解析】(1)把二次函數(shù)L1:y=ax2-2ax+a+3化成頂點(diǎn)式,即可求得最小值,分別求得二次函數(shù)L1 , L2的y值隨著x的增大而減小的x的取值,從而求得二次函數(shù)L1 , L2的y值同時(shí)隨著x的增大而減小時(shí),x的取值范圍;
(2)先求得E、F點(diǎn)的坐標(biāo),作MG⊥y軸于G,則MG=1,作NH⊥y軸于H,則NH=1,從而求得MG=NH=1,然后證得△EMG≌△FNH,∠MEF=∠NFE,EM=NF,進(jìn)而證得EM∥NF,從而得出四邊形ENFM是平行四邊形;
(3)作MN的垂直平分線,交MN于D,交x軸于A,先求得D的坐標(biāo),繼而求得MN的解析式,進(jìn)而就可求得直線AD的解析式,令y=0,求得A的坐標(biāo),根據(jù)對(duì)稱(chēng)軸從而求得另一個(gè)交點(diǎn)的坐標(biāo),就可求得方程-a(x+1)2+1=0的解.
此題考查了二次函數(shù)的綜合應(yīng)用,包括函數(shù)表達(dá)式,增減性問(wèn)題,平行四邊形判定,相似三角形等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為6cm的正方形ABCD折疊,使點(diǎn)D落在AB邊的中點(diǎn)E處,折痕為FH,點(diǎn)C落在Q處,EQ與BC交于點(diǎn)G,則△EBG的周長(zhǎng)是cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△AOB中,∠AOB=90°,AO=,BO=1,AB的垂直平分線交AB于點(diǎn)E,交射線BO于點(diǎn)F.點(diǎn)P從點(diǎn)A出發(fā)沿射線AO以每秒個(gè)單位的速度運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)O出發(fā)沿OB方向以每秒1個(gè)單位的速度運(yùn)動(dòng),當(dāng)點(diǎn)Q到達(dá)點(diǎn)B時(shí),點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

(1)當(dāng)t= 時(shí),PQ∥EF;
(2)若P、Q關(guān)于點(diǎn)O的對(duì)稱(chēng)點(diǎn)分別為P′、Q′,當(dāng)線段P′Q′與線段EF有公共點(diǎn)時(shí),t的取值范圍是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx(a≠0)經(jīng)過(guò)點(diǎn)A(2,0),點(diǎn)B(3,3),BC⊥x軸于點(diǎn)C,連接OB,等腰直角三角形DEF的斜邊EF在x軸上,點(diǎn)E的坐標(biāo)為(﹣4,0),點(diǎn)F與原點(diǎn)重合

(1)求拋物線的解析式并直接寫(xiě)出它的對(duì)稱(chēng)軸;
(2)△DEF以每秒1個(gè)單位長(zhǎng)度的速度沿x軸正方向移動(dòng),運(yùn)動(dòng)時(shí)間為t秒,當(dāng)點(diǎn)D落在BC邊上時(shí)停止運(yùn)動(dòng),設(shè)△DEF與△OBC的重疊部分的面積為S,求出S關(guān)于t的函數(shù)關(guān)系式;
(3)點(diǎn)P是拋物線對(duì)稱(chēng)軸上一點(diǎn),當(dāng)△ABP是直角三角形時(shí),請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)P坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的袋子中裝有僅顏色不同的10個(gè)小球,其中紅球4個(gè),黑球6個(gè).
(1)先從袋子中取出m(m>1)個(gè)紅球,再?gòu)拇又须S機(jī)摸出1個(gè)球,將“摸出黑球”記為事件A,請(qǐng)完成下列表格:

事件A

必然事件

隨機(jī)事件

m的值


(2)先從袋子中取出m個(gè)紅球,再放入m個(gè)一樣的黑球并搖勻,隨機(jī)摸出1個(gè)黑球的概率等于,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】寫(xiě)一個(gè)你喜歡的實(shí)數(shù)m的值 ,使得事件“對(duì)于二次函數(shù),當(dāng)x<﹣3時(shí),y隨x的增大而減小”成為隨機(jī)事件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖①是我們常見(jiàn)的地磚上的圖案,其中包含了一種特殊的平面圖形﹣正八邊形.

(1)如圖②,AE是⊙O的直徑,用直尺和圓規(guī)作⊙O的內(nèi)接正八邊形ABCDEFGH(不寫(xiě)作法,保留作圖痕跡);
(2)在(1)的前提下,連接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一個(gè)圓錐的側(cè)面,則這個(gè)圓錐底面圓的半徑等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)△ABC的面積為1,如圖①,將邊BC、AC分別2等分,BE1、AD1相交于點(diǎn)O,△AOB的面積記為S1;如圖②將邊BC、AC分別3等分,BE1、AD1相交于點(diǎn)O,△AOB的面積記為S2;…,依此類(lèi)推,則Sn可表示為  .(用含n的代數(shù)式表示,其中n為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y=x的圖象如圖所示,它與二次函數(shù)y=ax2﹣4ax+c的圖象交于A、B兩點(diǎn)(其中點(diǎn)A在點(diǎn)B的左側(cè)),與這個(gè)二次函數(shù)圖象的對(duì)稱(chēng)軸交于點(diǎn)C.

(1)求點(diǎn)C的坐標(biāo)
(2)設(shè)二次函數(shù)圖象的頂點(diǎn)為D.
①若點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱(chēng),且△ACD的面積等于3,求此二次函數(shù)的關(guān)系式;
②若CD=AC,且△ACD的面積等于10,求此二次函數(shù)的關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案