(2006•臨安市)P(3,-4)到x軸的距離是   
【答案】分析:根據(jù)點在坐標系中坐標的幾何意義即可解答.
解答:解:根據(jù)點在坐標系中坐標的幾何意義可知,P(3,-4)到x軸的距離是|-4|=4.故答案填4.
點評:本題考查的是點的坐標的幾何意義,橫坐標的絕對值就是點到y(tǒng)軸的距離,縱坐標的絕對值就是點到x軸的距離.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2006•臨安市)如圖,△OAB是邊長為2+的等邊三角形,其中O是坐標原點,頂點B在y軸正方向上,將△OAB折疊,使點A落在邊OB上,記為A′,折痕為EF.
(1)當A′E∥x軸時,求點A′和E的坐標;
(2)當A′E∥x軸,且拋物線y=-x2+bx+c經過點A′和E時,求拋物線與x軸的交點的坐標;
(3)當點A′在OB上運動,但不與點O、B重合時,能否使△A′EF成為直角三角形?若能,請求出此時點A′的坐標;若不能,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2006•臨安市)如圖,△OAB是邊長為2+的等邊三角形,其中O是坐標原點,頂點B在y軸正方向上,將△OAB折疊,使點A落在邊OB上,記為A′,折痕為EF.
(1)當A′E∥x軸時,求點A′和E的坐標;
(2)當A′E∥x軸,且拋物線y=-x2+bx+c經過點A′和E時,求拋物線與x軸的交點的坐標;
(3)當點A′在OB上運動,但不與點O、B重合時,能否使△A′EF成為直角三角形?若能,請求出此時點A′的坐標;若不能,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年浙江省臨安市中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•臨安市)如圖,△OAB是邊長為2+的等邊三角形,其中O是坐標原點,頂點B在y軸正方向上,將△OAB折疊,使點A落在邊OB上,記為A′,折痕為EF.
(1)當A′E∥x軸時,求點A′和E的坐標;
(2)當A′E∥x軸,且拋物線y=-x2+bx+c經過點A′和E時,求拋物線與x軸的交點的坐標;
(3)當點A′在OB上運動,但不與點O、B重合時,能否使△A′EF成為直角三角形?若能,請求出此時點A′的坐標;若不能,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年四川省成都市郫縣中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•臨安市)如圖,△OAB是邊長為2+的等邊三角形,其中O是坐標原點,頂點B在y軸正方向上,將△OAB折疊,使點A落在邊OB上,記為A′,折痕為EF.
(1)當A′E∥x軸時,求點A′和E的坐標;
(2)當A′E∥x軸,且拋物線y=-x2+bx+c經過點A′和E時,求拋物線與x軸的交點的坐標;
(3)當點A′在OB上運動,但不與點O、B重合時,能否使△A′EF成為直角三角形?若能,請求出此時點A′的坐標;若不能,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年山東省濟寧市嘉祥縣梁寶寺鎮(zhèn)第一中學九年級(下)第一次月考數(shù)學試卷(解析版) 題型:選擇題

(2006•臨安市)從正面觀察下圖的兩個物體,看到的是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案