觀察算式:
數(shù)學(xué)公式-數(shù)學(xué)公式
數(shù)學(xué)公式-數(shù)學(xué)公式-數(shù)學(xué)公式,
數(shù)學(xué)公式-數(shù)學(xué)公式-數(shù)學(xué)公式-數(shù)學(xué)公式;

(1)按規(guī)律填空:
數(shù)學(xué)公式=______;
數(shù)學(xué)公式=______;
③如果n為正整數(shù),那么數(shù)學(xué)公式=______;
(2)計(jì)算(由此拓展寫(xiě)出具體過(guò)程):
數(shù)學(xué)公式
②1-數(shù)學(xué)公式-數(shù)學(xué)公式-數(shù)學(xué)公式-…-數(shù)學(xué)公式

解:∵觀察算式:
-,
--,
---;

∴(1)①=1-+-+-+-=1-=;
=+…+-=1-=
③如果n為正整數(shù),那么=1-=
故答案為:,

(2)①∵+=+=;
++=++=…;
1-==2×;
1-==2×…,
=(1-)=;

②∵1--=,1---=…,
1--=1-(1-)-(-)=,1---=1---=,
∴1----…-=1----…-=
分析:(1)根據(jù)題意找出規(guī)律,根據(jù)此規(guī)律即可得出結(jié)論;
(2)把所給的式子進(jìn)行化簡(jiǎn),找出規(guī)律即可.
點(diǎn)評(píng):本題考查的是有理數(shù)的混合運(yùn)算,根據(jù)題意找出規(guī)律是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察算式:
1
1×2
=1-
1
2
,
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
,并以此規(guī)律計(jì)算:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2007×2008

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察算式:
1
1×2
=1-
1
2
=
1
2

1
1×2
+
1
2×3
=1-
1
2
+
1
2
-
1
3
=
2
3

1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
3
4

(1)按規(guī)律填空
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=
 

1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
99×100
=
 

(2)若n為正整數(shù),化簡(jiǎn):
1
n(n+1)
+
1
(n+1)(n+2)
+
1
(n+2)(n+3)
+
1
(n+3)(n+4)
+…+
1
(n+99)(n+100)
,并寫(xiě)出求解過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察算式:
1
1×2
=1
-
1
2
=
1
2

1
1×2
+
1
2×3
=1
-
1
2
+
1
2
-
1
3
=
2
3
,
1
1×2
+
1
2×3
+
1
3×4
=1
-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
3
4
;

(1)按規(guī)律填空:
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
=
4
5
4
5
;
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
99×100
=
99
100
99
100
;
③如果n為正整數(shù),那么
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
n×(n+1)
=
n
n+1
n
n+1
;
(2)計(jì)算(由此拓展寫(xiě)出具體過(guò)程):
1
1×3
+
1
3×5
+
1
5×7
+…+
1
99×101

②1-
1
2
-
1
6
-
1
12
-…-
1
9900

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察算式:
1
1×2
=1-
1
2
=
1
2

1
1×2
+
1
2×3
=1-
1
2
+
1
2
-
1
3
=
2
3

1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
3
4

按規(guī)律填空 
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
=
4
5
4
5

1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=
5
6
5
6

1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
99×100
=
99
100
99
100

若n為正整數(shù),試求:
1
n(n+1)
+
1
(n+1)(n+2)
+
1
(n+2)(n+3)
+
1
(n+3)(n+4)
+…+
1
(n+99)(n+100)
的值,并寫(xiě)出求值過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察算式:
1
1×2
=1-
1
2
=
1
2
,
1
1×2
+
1
2×3
=1-
1
2
+
1
2
-
1
3
=
2
3

1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
3
4

按規(guī)律填空
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
=
4
5
4
5

1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
99×100
=
99
100
99
100
;
如果n為正整數(shù),那么
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
n(n+1)
=
n
n+1
n
n+1

由此拓展寫(xiě)出具體過(guò)程,
1
1×3
+
1
3×5
+
1
5×7
+…+
1
99×101

查看答案和解析>>

同步練習(xí)冊(cè)答案