如圖,已知正方形ABED與正方形BCFE,現(xiàn)從A,B,C,D,E,F(xiàn)六個(gè)點(diǎn)中任取三個(gè)點(diǎn),使得這三個(gè)點(diǎn)能作為直角三角形的三個(gè)頂點(diǎn),則這樣的直角三角形共有


  1. A.
    10個(gè)
  2. B.
    12個(gè)
  3. C.
    14個(gè)
  4. D.
    16個(gè)
C
分析:根據(jù)正方形的性質(zhì)和直角三角形的判定方法進(jìn)行判定,連接AE得△ABE、△ADE,連接BD得△ABD、△BED,同理連接CE、BF、A、FCD得到△BCE、△CFE、△BCF、△BEF、△ACF、△ADF、△ACD、△CDF、△AEC、△DBF.
解答:解:可得到14個(gè)直角三角形,分別為△ABE、△ADE、△ABD、△BED、△BCE、△CFE、△BCF、△BEF、△ACF、△ADF、△ACD、△CDF、△AEC、△DBF.
故選C.
點(diǎn)評(píng):此題主要考查了正方形的性質(zhì)(正方形的對(duì)交線相等平分且垂直)及直角三角形的判定.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知正方形ABCD的邊AB與正方形AEFM的邊AM在同一直線上,直線BE與DM交于點(diǎn)N.求證:BN⊥DM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•北碚區(qū)模擬)如圖,已知正方形ABCD,點(diǎn)E是BC上一點(diǎn),點(diǎn)F是CD延長線上一點(diǎn),連接EF,若BE=DF,點(diǎn)P是EF的中點(diǎn).
(1)求證:DP平分∠ADC;
(2)若∠AEB=75°,AB=2,求△DFP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD,點(diǎn)E在BC邊上,將△DCE繞某點(diǎn)G旋轉(zhuǎn)得到△CBF,點(diǎn)F恰好在AB邊上.
(1)請(qǐng)畫出旋轉(zhuǎn)中心G (保留畫圖痕跡),并連接GF,GE;
(2)若正方形的邊長為2a,當(dāng)CE=
a
a
時(shí),S△FGE=S△FBE;當(dāng)CE=
2a+
2
a
2
或EC=
2a-
2
a
2
2a+
2
a
2
或EC=
2a-
2
a
2
 時(shí),S△FGE=3S△FBE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD的對(duì)角線交于O,過O點(diǎn)作OE⊥OF,分別交AB、BC于E、F,若AE=4,CF=3,則EF的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,E是AC上的一點(diǎn),過點(diǎn)A作AG⊥BE,垂足為G,AG交BD于點(diǎn)F.
(1)試說明OE=OF;
(2)當(dāng)AE=AB時(shí),過點(diǎn)E作EH⊥BE交AD邊于H.若該正方形的邊長為1,求AH的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案