已知:如圖,在矩形ABCD中,AB=4,BC=6,M是邊BC的中點(diǎn),DE⊥AM,垂足為E.
求:線段DE的長.

【答案】分析:首先根據(jù)矩形的性質(zhì),求得AD∥BC,即可得到∠DAE=∠AMB,又由∠DEA=∠B,根據(jù)有兩角對應(yīng)相等的三角形相似,可得△DAE∽△AMB,根據(jù)相似三角形的對應(yīng)邊成比例,即可求得DE的長.
解答:解:在矩形ABCD中,
∵M(jìn)是邊BC的中點(diǎn),BC=6,AB=4,
∴AM=5,
∵AD∥BC,
∴∠DAE=∠AMB,
∵∠DEA=∠B=90°,
∴△DAE∽△AMB,
,即

點(diǎn)評:此題考查了相似三角形的判定與性質(zhì),以及矩形的性質(zhì).解題時要注意識圖,準(zhǔn)確應(yīng)用數(shù)形結(jié)合思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,在矩形ABCD中,P是邊AD上的動點(diǎn),PE垂直AC于E,PF垂直BD于F,如果AB=3,AD=4,那么(  )
A、PE+PF=
12
5
B、
12
5
<PE+PF<
13
5
C、PE+PF=5
D、3<PE+PF<4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,在矩形ABCD中,M是邊BC的中點(diǎn),AB=3,BC=4,⊙D與直線AM相切于點(diǎn)E,
求⊙D的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在矩形ABCD中,AC是對角線.點(diǎn)P為矩形外一點(diǎn)且滿足AP=PC,AP⊥PC.PC交AD于點(diǎn)N,連接DP,過點(diǎn)P作PM⊥PD交AD于M.
(1)若AP=
5
,AB=
1
3
BC,求矩形ABCD的面積;
(2)若CD=PM,求證:AC=AP+PN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在矩形ABCD中,AB=4,AD=10,F(xiàn)是AD上一點(diǎn),CF⊥EF于點(diǎn)F交AB于點(diǎn)E,
DC
CF
=
1
2
.求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在矩形ABCD中,對角線AC與BD相交于點(diǎn)O,BE⊥AC于E,CF⊥BD于F,請你判斷BE與CF的大小關(guān)系,并說明你的理由.

查看答案和解析>>

同步練習(xí)冊答案