已知拋物線y=ax2+bx+c與y軸交于點C,與x軸交于點A(x1,0)、B(x2,0)(x1<x2),頂點M的縱坐標(biāo)為-4,若x1、x2是方程x2-2(m-1)x+m2-7=0的兩個根,且x21+x22=10.
(1)求A、B兩點的坐標(biāo);
(2)求拋物線的解析式及點C的坐標(biāo);
(3)在拋物線上是否存在點P,使三角形PAB的面積等于四邊形ACMB的面積的2倍?若存在,求出所有符合條件的點的坐標(biāo);若不存在,請說明理由.
【答案】分析:(1)根據(jù)一元二次方程根與系數(shù)的關(guān)系,建立關(guān)于m的方程,然后解答即可求出m的值;
(2)根據(jù)A、B的橫坐標(biāo),求出M的橫坐標(biāo),從而得到M的坐標(biāo),然后利用待定系數(shù)法求出函數(shù)解析式,令x=0,即可得到y(tǒng)=-3,從而得到函數(shù)解析式.
(3)假設(shè)存在點P,根據(jù)S四邊形ACMB=S△ACO+S梯形OCMD+S△DMB,求出四邊形的面積,根據(jù)S△PAB=2S四邊形ACMB,建立關(guān)于m的解析式,據(jù)此解答即可.
解答:解:(1)∵x1,x2是方程x2-2(m-1)x+m2-7=0的兩個根,
∴x1+x2=2(m-1),x1•x2=m2-7.
又∵x12+x22=10,
∴(x1+x22-2x1x2=10,
∴[2(m-1)]2-2(m2-7)=10,
即m2-4m+4=0.
解得:m1=m2=2.
將m=2代入方程x2-2(m-1)x+m2-7=0,
得:x2-2x-3=0,
解得:x1=-1,x2=3.
∴點A的坐標(biāo)為(-1,0),點B的坐標(biāo)為(3,0).

(2)因為拋物線與x軸的交點為A(-1,0)、B(3,0),由對稱性可知,頂點M的橫坐標(biāo)為1,則頂點M的坐標(biāo)為(1,-4).
,
解得:,
∴拋物線的解析式為y=x2-2x-3.
在y=x2-2x-3中,
令x=0,得y=-3.
∴點C的坐標(biāo)為(0,-3).

(3)設(shè)拋物線的對稱軸與x軸交于點D,
則AO=OD=1,DB=2,OC=3,
DM=4,AB=4.
∴S四邊形ACMB=S△ACO+S梯形OCMD+S△DMB
=•AO•CO+(CO+MD)+DB•MD
=×1×3+×(3+4)×1+×2×4=9.
設(shè)P(x,y)為拋物線上一點,
則S△PAB=AB•|y|.
若S△PAB=2S四邊形ACMB,
•AB•|y|=18,
∴丨y丨=9,y=±9.
將y=9代入y=x2-2x-3中,得x2-2x-3=9,
即x2-2x-12=0,
解得:x1=1-,x2=1+
將y=-9代入y=x2-2x-3中,得:x2-2x-3=-9,
即x2-2x+6=0.
∵△=(-2)2-4×1×6=-20<0,
∴此方程無實數(shù)根.
∴符合條件的點P有兩個:P1(1-,9),P2(1+,9).
點評:本題考查了二次函數(shù)的綜合題型,其中涉及到的知識點有拋物線的頂點求法和三角形的面積求法.在求存在性問題時,要假設(shè)該點存在,然后進行計算,若得出矛盾,則不存在,否則,存在.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-2,0),B(0,-4),C(2,-4)三點,且精英家教網(wǎng)與x軸的另一個交點為E.
(1)求拋物線的解析式;
(2)用配方法求拋物線的頂點D的坐標(biāo)和對稱軸;
(3)求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2和直線y=kx的交點是P(-1,2),則a=
 
,k=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、已知拋物線y=ax2+bx+c的開口向下,頂點坐標(biāo)為(2,-3),那么該拋物線有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點P在x軸上,與y軸交于點Q,過坐標(biāo)原點O,作OA⊥PQ,垂足為A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣州)已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點A(1,0),頂點為B,且拋物線不經(jīng)過第三象限.
(1)使用a、c表示b;
(2)判斷點B所在象限,并說明理由;
(3)若直線y2=2x+m經(jīng)過點B,且于該拋物線交于另一點C(
ca
,b+8
),求當(dāng)x≥1時y1的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案