【題目】某超市擬于中秋節(jié)前天里銷售某品牌月餅,其進價為/.設第天的銷售價格為(元/),銷售量為.該超市根據(jù)以往的銷售經(jīng)驗得出以下的銷售規(guī)律:①當時,;當時,滿足一次函數(shù)關系,且當時,時,.②的關系為

1)當時,的關系式為   ;

2為多少時,當天的銷售利潤(元)最大?最大利潤為多少?

3)若超市希望第天到第天的日銷售利潤(元)隨的增大而增大,則需要在當天銷售價格的基礎上漲/,求的最小值.

【答案】1;(2時,當天的銷售利潤(元)最大,最大利潤為元;(33

【解析】

1)依據(jù)題意利用待定系數(shù)法,易得出當時,的關系式為:,

2)根據(jù)銷售利潤=銷售量×(售價﹣進價),列出每天的銷售利潤(元)與銷售價(元/箱)之間的函數(shù)關系式,再依據(jù)函數(shù)的增減性求得最大利潤.

3)要使第天到第天的日銷售利潤(元)隨的增大而增大,則對稱軸,求得即可

1)依題意,當時,時,

時,設,

則有,解得

的關系式為:

2)依題意,

整理得,

時,

增大而增大

時,取最大值

時,

時,取得最大值,此時

綜上所述,時,當天的銷售利潤(元)最大,最大利潤為

3)依題意,

天到第天的日銷售利潤(元)隨的增大而增大

對稱軸,得

的最小值為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,如圖1,拋物線yax2+bx+c的對稱軸為,與x軸的交點A(﹣10)與y軸交于點C0,﹣2).

1)求拋物線的解析式;

2)如圖2.點P是直線BC下方拋物線上的一點,過點PBC的平行線交拋物線于點Q(點Q在點P右側),連結BQ,當△PCQ的面積為△BCQ面積的一半時,求P點的坐標;

3)現(xiàn)將該拋物線沿射線AC的方向進行平移,平移后的拋物線與直線AC的交點為A'、C'(點C'在點A'的下方),與x軸的交點為B',當△AB'C'與△AA'B'相似時,求出點A′的橫坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市某中學組織部分學生去某地開展研學旅行活動,在參加此次活動的師生中,若每位老師帶17個學生,還剩12個學生沒人帶;若每位老師帶18個學生,就有一位老師少帶4個學生,現(xiàn)有甲、乙兩種大客車,它們的載客量和租金如表所示.

甲種客車

乙種客車

載客量/(人/輛)

30

42

租金/(元/輛)

300

400

學校計劃此次研學旅行活動的租車總費用不超過3100元,為了安全,每輛客車上至少要有2名老師.

1)參加此次研學旅行活動的老師和學生各有多少人?

2)①既要保證所有師生都有車坐,又要保證每輛客車上至少要有2名老師,需租用幾輛客車;

②求租車費用的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4AD=2,點ECD上,DE=1,點F是邊AB上一動點,以EF為斜邊作RtEFP.若點P在矩形ABCD的邊上,且這樣的直角三角形恰好有兩個,則AF的值是________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點是線段上一點,,以點為圓心,的長為半徑作⊙,過點的垂線交⊙兩點,點在線段的延長線上,連接交⊙于點,以為邊作

1)求證:是⊙的切線;

2)若,求四邊形與⊙重疊部分的面積;

3)若,,連接,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在平面直角坐標系中,已知四點,動點以每秒個單位長度的速度沿運動(不與點、點重合),設運動時間為(秒).

(1)求經(jīng)過、三點的拋物線的解析式;

(2)點在()中的拋物線上,當的中點時,若,求點的坐標;

(3)當上運動時,如圖②.過點軸,垂足為,,垂足為.設矩形重疊部分的面積為,求的函數(shù)關系式,并求出的最大值;

(4)點軸上一點,直線與直線交于點,與軸交于點.是否存在點,使得為等腰三角形?若存在,直接寫出符合條件的所有點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在運動會前夕,光明中學都會購買籃球、足球作為獎品.若購買6個籃球和8個足球共花費1700元,且購買一個籃球比購買一個足球多花50元.

1)求購買一個籃球,一個足球各需多少元;

2)今年學校計劃購買這種籃球和足球共10個,恰逢商場在促銷活動,籃球打九折,足球打八五折,若此次購買兩種球的總費用不超過1150元,則最多可購買多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】亞洲文明對話大會召開期間,大批的大學生志愿者參與服務工作.某大學計劃組織本校全體志愿者統(tǒng)一乘車去會場,若單獨調配36座新能源客車若干輛,則有2人沒有座位;若只調配22座新能源客車,則用車數(shù)量將增加4輛,并空出2個座位.

(1)計劃調配36座新能源客車多少輛?該大學共有多少名志愿者?

(2)若同時調配36座和22座兩種車型,既保證每人有座,又保證每車不空座,則兩種車型各需多少輛?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為慶祝中華人民共和國七十周年華誕,某校舉行書畫大賽,準備購買甲、乙兩種文具,獎勵在活動中表現(xiàn)優(yōu)秀的師生.已知購買個甲種文具、個乙種文具共需花費元;購買個甲種文具、個乙種文具共需花費元.

1)求購買一個甲種文具、一個乙種文具各需多少元?

2)若學校計劃購買這兩種文具共個,投入資金不少于元又不多于元,設購買甲種文具個,求有多少種購買方案?

3)設學校投入資金元,在(2)的條件下,哪種購買方案需要的資金最少?最少資金是多少元?

查看答案和解析>>

同步練習冊答案