在矩形ABCD中,E是BC邊上的動(dòng)點(diǎn)(點(diǎn)E不與端點(diǎn)B、C重合),以AE為邊,在直線(xiàn)BC的上方作矩形AEFG,使頂點(diǎn)G恰好落在射線(xiàn)CD上,連接AC、FC,并過(guò)點(diǎn)F作FH⊥BC,交BC的延長(zhǎng)線(xiàn)于點(diǎn)H.
(1)如圖1,當(dāng)AB=BC時(shí);
①求證:矩形AEFG是正方形;
②猜想AC、FC的位置關(guān)系,并證明你的猜想.
(2)如圖2,當(dāng)AB≠BC時(shí),上面的猜想還成立嗎?若不成立,請(qǐng)說(shuō)明理由;若成立,請(qǐng)給出證明.

【答案】分析:(1)①由已知條件可先判定四邊形AEFG為矩形,再根據(jù)鄰邊相等(AB=BC)的矩形為正方形即可判定四邊形AEFG為正方形;
②由①可知AE=EF,∠AEF=90°,再由已知條件判定△AEB≌△EFH,進(jìn)而證明∠ACF=90°,即AC⊥FC;
(2)當(dāng)AB≠BC時(shí),AC⊥FC仍然成立,首先判定△AEB∽△EFH,再判定△CHF∽△ABC,利用相似三角形的性質(zhì):對(duì)應(yīng)角相等即可證明AC⊥FC.
解答:解:(1)①證明:當(dāng)AB=BC時(shí),矩形ABCD是正方形.
∴AB=AD時(shí),∠ABE=∠ADG=90°.
∵∠BAD=∠EAG=90°,
∴∠BAD-∠EAD=∠EAG-∠EAD,
∴∠BAE=∠DAG,
∴△ABE≌△ADG. 已知條件
∴AE=AG.
∴矩形AEFG是正方形.
②猜想:AC⊥FC. 
證明:∵矩形AEFG是正方形,
∴AE=EF,∠AEF=90°,
∴∠AEB+∠FEH=90°.
又∵∠AEB+∠EAB=90°,
∴∠EAB=∠FEH.
∵∠ABE=∠EHF=90°,
∴△AEB≌△EFH.
∴BE=HF,AB=EH.
∴BC=EH,∴BE=CH,
∴HF=CH.∴∠FCH=45°.
∵AC是正方形ABCD的對(duì)角線(xiàn),
∴∠ACB=45°.
∴∠ACF=90°,
∴AC⊥FC.

(2)當(dāng)AB≠BC時(shí),AC⊥FC仍然成立. 
證明:由(1)可知:∠EAB=∠FEH,∠ABE=∠EHF,
∴△AEB∽△EFH,
=
易證△AGD≌△EFH.
∴AD=EH,DG=HF.
∵AD=BC,
∴BC=EH,
∴BE=CH.
=,
=
∵∠CHF=∠ABC=90°,
∴△CHF∽△ABC,
∴∠HCF=∠BAC.  
∵∠BAC+∠ACB=90°,
∴∠HCF+∠ACB=90°,
∴∠ACF=90°,
∴AC⊥FC.
點(diǎn)評(píng):本題考查了矩形的判定方法、正方形的判定方法以及相似三角形的判定和相似三角形的性質(zhì),題目綜合性很強(qiáng),難度不。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、如圖,在矩形ABCD中,DE平分∠ADC交BC于點(diǎn)E,EF⊥AD交AD于點(diǎn)F,若EF=3,AE=5,則AD等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4,BC=7,P是BC邊上與B點(diǎn)不重合的動(dòng)點(diǎn),過(guò)點(diǎn)P的直線(xiàn)交CD的延長(zhǎng)線(xiàn)于R,交AD于Q(Q與D不重合),且∠RPC=45°,設(shè)BP=x,梯形ABPQ的面積為y,求y與x之間的函數(shù)關(guān)系,并求自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,F(xiàn)是BC邊上一點(diǎn),AF的延長(zhǎng)線(xiàn)交DC的延長(zhǎng)線(xiàn)于G,DE⊥AG于E,且DE=DC.求證:AE=BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在矩形ABCD中,AB=8,AD=6,E為AB邊上一點(diǎn),連接DE,過(guò)C作CF垂直DE.
(1)求證:△CDF∽△DEA;
(2)若設(shè)CF=x,DE=y,求y與x的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形ABCD中,AF、BE、CE、DF分別是矩形的四個(gè)角的角平分線(xiàn),E、M、F、N是其交點(diǎn),求證:四邊形EMFN是正方形.

查看答案和解析>>

同步練習(xí)冊(cè)答案