作業(yè)寶如圖,在△ABC中,AC>AB,D點(diǎn)在AC上,AB=CD,E、F分別是BC、AD的中點(diǎn),連結(jié)EF并延長(zhǎng),與BA的延長(zhǎng)線交于點(diǎn)G,若∠EFC=60°,聯(lián)結(jié)GD,判斷△AGD的形狀并證明.

解:判斷:△AGD是直角三角形.
證明:連接BD,取BD的中點(diǎn)H,連接HF、HE,
∵F是AD的中點(diǎn),
∴HF∥AB,HF=AB,
∴∠1=∠3,
同理,HE∥CD,HE=CD,
∴∠2=∠EFC,
∵AB=CD,
∴HF=HE,
∴∠1=∠2,
∴∠3=∠EFC,
∵∠EFC=60°,
∴∠3=∠EFC=∠AFG=60°,
∴△AGF是等邊三角形,
∴AF=FG,
∵AF=FD,
∴GF=FD,
∴∠FGD=∠FDG=30°,
∴∠AGD=90°,
即△AGD是直角三角形.
分析:連接BD,取BD的中點(diǎn)H,連接HF、HE,利用中位線的性質(zhì)及等腰三角形的性質(zhì),在△AFG中找到各角之間的關(guān)系,繼而可得△AGF是等邊三角形,推出∠AGD=90°即可得出結(jié)論.
點(diǎn)評(píng):本題考查了三角形的中位線定理及等邊三角形的判定與性質(zhì),解答本題的關(guān)鍵是作出輔助線,利用三角形的中位線定理及平行線的性質(zhì)建立各角之間的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案