計算:(1)(-a3)2•(-a2)3
(2)-t3•(-t)4•(-t)5
(3)(p-q)4÷(q-p)3•(p-q)2
(4)(-3a)3-(-a)•(-3a)2
(5)4-(-2)-2-32÷(3.14-π)0
解:(1)(-a
3)
2•(-a
2)
3,
=a
6•(-a
6),
=-a
6+6,
=-a
12;
(2)-t
3•(-t)
4•(-t)
5,
=t
3•t
4•t
5,
=t
3+4+5,
=t
12;
(3)(p-q)
4÷(q-p)
3•(p-q)
2,
=(p-q)
4÷[-(p-q)]
3•(p-q)
2,
=-(p-q)
4-3+2,
=(q-p)
3;
(4)(-3a)
3-(-a)•(-3a)
2,
=-27a
3+9a
3,
=-18a
3;
(5)4-(-2)
-2-3
2÷(3.14-π)
0,
=4-
-9÷1,
=4-
-9,
=5
.
分析:(1)根據(jù)冪的乘方,底數(shù)不變指數(shù)相乘,同底數(shù)冪相乘,底數(shù)不變指數(shù)相加計算解答;
(2)先運算符號,再根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加計算解答;
(3)先都轉(zhuǎn)化成以(p-q)為底數(shù)的冪,再根據(jù)同底數(shù)冪相除,底數(shù)不變指數(shù)相減和同底數(shù)冪相乘,底數(shù)不變指數(shù)相加計算;
(4)根據(jù)積的乘方,把每一個因數(shù)分別乘方,再把所得的冪相乘進行乘方后,再根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加計算后合并同類項;
(5)先算乘方,再算乘除,最后算加減.
點評:本題主要考查冪的運算性質(zhì),熟練掌握運算性質(zhì)并靈活運用是解題的關(guān)鍵.