如圖9,已知,則下列式子中等于的是

[  ]

A.α+β+γ
B.α+βγ
C.β+γα
D.αβ+γ
答案:B
解析:

 因為β=γ+∠1  而由L∥L 得 ∠1 +α=180°即

∠1=180°-α  所以β=γ+180°-α  α+β-γ=180°

選B.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

4、已知:如圖,∠1=∠2=∠4,則下列結(jié)論不正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•博野縣模擬)閱讀下面材料:
小明遇到這樣一個問題:如圖1,△ABO和△CDO均為等腰直角三角形,∠AOB=∠COD=90°.若△BOC的面積為1,試求以AD、BC、OC+OD的長度為三邊長的三角形的面積.

小明是這樣思考的:要解決這個問題,首先應(yīng)想辦法移動這些分散的線段,構(gòu)造一個三角形,再計算其面積即可.他利用圖形變換解決了這個問題,其解題思路是延長CO到E,使得OE=CO,連接BE,可證△OBE≌△OAD,從而得到的△BCE即是以AD、BC、OC+OD的長度為三邊長的三角形(如圖2).
請你回答:圖2中△BCE的面積等于
2
2

請你嘗試用平移、旋轉(zhuǎn)、翻折的方法,解決下列問題:
如圖3,已知△ABC,分別以AB、AC、BC為邊向外作正方形ABDE、AGFC、BCHI,連接EG、FH、ID.
(1)在圖3中利用圖形變換畫出并指明以EG、FH、ID的長度為三邊長的一個三角形(保留畫圖痕跡);
(2)若△ABC的面積為1,則以EG、FH、ID的長度為三邊長的三角形的面積等于
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知雙曲線y=
k
x
(k>0)
與直線y=k1x交于A,B兩點,點A在第一象限.試解答下列問題:
(1)若點A的坐標(biāo)為(4,2),則點B的坐標(biāo)為
 

(2)若點A的橫坐標(biāo)為m,則點B的坐標(biāo)可表示為
 
;(用m、k表示)
(3)如圖2,過原點O作另一條直線y=k2x(k1≠k2),交雙曲線y=
k
x
(k>0)
于P,Q兩點,點P在第一象限,求證:四邊形APBQ一定是平行四邊形;
(4)如圖3,當(dāng)k=12,k1=
3
4
,k2=
4
3
時,判定四邊形APBQ的形狀,并證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖2,已知,則添加下列一個條件后,仍無法判定的是(    )

、                          B、

、                         

查看答案和解析>>

同步練習(xí)冊答案