如圖所示,點是⊙上一點,⊙與⊙相交于、兩點,,垂足為,分別交⊙、⊙兩點,延長交⊙,交的延長線于,,連結
小題1:求證:;
小題2:若,求證:
小題3: 若,且線段、的長是關于的方程的兩個實數(shù)根,求、的長.


小題1:∵BC⊥AD于D,
∴∠BDA=∠CDA=90°,
∴AB、AC分別為⊙O1、⊙O2的直徑.                       
∵∠2=∠3,∠BGD+∠2=90°,∠C+∠3=90°,
∴∠BGD=∠C.                                       
小題2:∵∠DO2C=45°,∴∠ABD=45°
∵O2D=O2C,
∴∠C=∠O2DC=(180°-∠DO2C)=67.5°,                   
∴∠4=22.5°,·                                           
∵∠O2DC=∠ABD+∠F,
∴∠F=∠4=22.5°,∴AD=AF.                                 
小題3:∵BF=6CD,∴設CD=k,則BF=6k.
連結AE,則AE⊥AD,∴AE∥BC,
 ∴AE·BF=BD·AF.
又∵在△AO2E和△DO2C中,AO2=DO2
∠AO2E=∠DO2C, O2E=O2C,
∴△AO2E≌△DO2C,∴AE=CD=k,
∴6k2=BD·AF=(BC-CD)(BF-AB).
∵∠BO2A=90°,O2A=O2C,∴BC=AB.
∴6k2=(BC-k)(6k-BC).∴BC2-7kBC+12k2=0,
解得:BC=3k或BC=4k.                                 
當BC=3k,BD=2k.
∵BD、BF的長是關于x的方程x2-(4m+2)x+4m2+8=0的兩個實數(shù)根.
∴由根與系數(shù)的關系知:BD+BF=2k+6k=8k=4m+2.
整理,得:4m2-12m+29=0.
∵△=(-12)2-4×4×29=-320<0,此方程無實數(shù)根.
∴BC=3k(舍).                                         
當BC=4k時,BD=3k.
∴3k+6k=4m+2,18k2=4m2+8,整理,
得:m2-8m+16=0,
解得:m1=m2=4,
∴原方程可化為x2-18x+72=0,
解得:x1=6,x2=12, ∴BD=6,BF=12.
 略
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,為⊙O的直徑,為弦,,如果°,
那么∠A等于
A.°
B.°
C.°
D.°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直角梯形ABCD中,ADBC,∠A=90o,∠C=60°,AD=3cm,BC=9cm.⊙O1的圓心O1從點A開始沿折線A—D—C以1cm/s的速度向點C運動,⊙O2的圓心O2從點B開始沿BA邊以cm/s的速度向點A運動,⊙O1半徑為2cm,⊙O2的半徑為4cm,若O1O2分別從點A、點B同時出發(fā),運動的時間為ts。

小題1:(1)設經(jīng)過t秒,⊙O2與腰CD相切于點F,過點F畫EF⊥DC,交AB于E,則EF=          。
小題2:(2)過E畫EG∥BC,交DC于G,畫GH⊥BC,垂足為H.則∠FEG=             。
小題3:(3)求此時t的值。
小題4:(4)在0<t≤3范圍內(nèi),當t為何值時,⊙O1與⊙O2外切?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,⊙O直徑CD=5cm,AB是⊙O的弦,AB⊥CD,垂足M,OM:OD=3:5,則AB 的長是(     )
A.2cmB.3cmC.4cmD.2cm

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

平面內(nèi)有一點P,點P到⊙O的最短距離是6cm,最遠距離是10cm,則⊙O的半徑為     。 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

若兩圓半徑分別是,兩圓的圓心距是,則兩圓的位置關系是_▲_;

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

小紅同學要用紙板制作一個高4cm,底面周長是6π cm的圓錐形漏斗模型,若不計接縫和損耗,則她所需紙板的面積是                             ( ▲。
A.12πB.15πcm2C.18πcm2D.24πcm2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在中,,經(jīng)過點且與邊相切的動圓與分別相交于點,則線段長度的最小值()
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖所示,邊長為1的小正方形構成的網(wǎng)格中,半徑為1的⊙O的圓心O在格點上,則∠AED的正切值等于        

查看答案和解析>>

同步練習冊答案