如圖,拋物線交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,頂點(diǎn)為D.
(1)求點(diǎn)A、B、C的坐標(biāo);
(2)把△ABC繞AB的中點(diǎn)M旋轉(zhuǎn)180°,得到四邊形AEBC,求E點(diǎn)的坐標(biāo);
(3)試判斷四邊形AEBC的形狀,并說(shuō)明理由.

【答案】分析:(1)要求A、B、C的坐標(biāo),這點(diǎn)分別在x軸和y軸上,當(dāng)x=0或y=0時(shí)就可以求出其坐標(biāo).
(2)作EF⊥AB于F,可以證明△AFE≌△BOC,得到線段相等,利用線段EF=OC,從而得到點(diǎn)E的坐標(biāo).
(3)根據(jù)旋轉(zhuǎn)很容易得出四邊形AEBC是平行四邊形,利用勾股定理的逆定理證明三角形ABC是直角三角形,從而判斷四邊形AEBC是矩形.
解答:解:(1)當(dāng)y=0時(shí),
,
解得:x1=1,x2=-3,
∴A(-3,0),B(1,0),
當(dāng)x=0時(shí),
y=-,
∴C(0,-),
∴A(-3,0),B(1,0),C(0,-);

(2)由(1)可知AO=3,BO=1,CO=
作EF⊥AB于F,
∠AFE=∠COB=90°,
∵△ABE是由△ABC旋轉(zhuǎn)180°得到的.
∴AE=BC,∠BAE=∠ABD,
∴△AFE≌△BOC,
∴EF=OC,AF=OB,
∴EF=,AF=1,
∴OF=2,
∴E(-2,);

(3)四邊形AEBC是矩形.
證明:在Rt△AOC和Rt△BOC中,由勾股定理得:
AC=,BC=,
∴AC=2,BC=2,
∴AC2=12,BC2=4,
∴AC2+BC2=16,
∵AB2=16,
∴AC2+BC2=AB2
∴∠ACB=90°,
∵四邊形AEBC是由三角形ABC繞AB的中點(diǎn)M旋轉(zhuǎn)180°得到的,
∴四邊形AEBC是平行四邊形,
∵∠ACB=90°,
∴四邊形AEBC是矩形.
點(diǎn)評(píng):本題是一道二次函數(shù)的綜合試題,考查了圖形的旋轉(zhuǎn),全等三角形,勾股定理逆定理的運(yùn)用以及根據(jù)解析式求函數(shù)與x軸及y軸的交點(diǎn)坐標(biāo).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線交x軸于點(diǎn)A(-2,0),點(diǎn)B(4,0),交y軸于點(diǎn)C(0,4).
(1)求拋物線的解析式,并寫出頂點(diǎn)D的坐標(biāo);
(2)若直線y=x交拋物線于M,N兩點(diǎn),交拋物線的對(duì)稱軸于點(diǎn)E,連接BC,EB,EC.試判斷△EBC的形狀,并加以證明;
(3)設(shè)P為直線MN上的動(dòng)點(diǎn),過(guò)P作PF∥ED交直線MN上方的拋物線于點(diǎn)F.問(wèn):在直線MN上是否存在點(diǎn)P,使得以P,E,D,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)P及相應(yīng)的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線交x軸于點(diǎn)A(-2,0),點(diǎn)B(4,0),交y軸于點(diǎn)C(0,-4).
(1)求拋物線的解析式,并寫出頂點(diǎn)D的坐標(biāo);
(2)若直線y=-x交拋物線于M,N兩點(diǎn),交拋物線的對(duì)稱軸于點(diǎn)E,連接BC,EB,EC.試判斷△EBC的形狀,并加以證明;
(3)設(shè)P為直線MN上的動(dòng)點(diǎn),過(guò)P作PF∥ED交直線MN下方的拋物線于點(diǎn)F.問(wèn):在直線MN上是否存在點(diǎn)P,使得以P、E、D、F為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)P及相應(yīng)的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,拋物線交x軸于點(diǎn)A(-2,0),點(diǎn)B(4,0),交y軸于點(diǎn)C(0,4).
(1)求拋物線的解析式,并寫出頂點(diǎn)D的坐標(biāo);
(2)若直線y=x交拋物線于M,N兩點(diǎn),交拋物線的對(duì)稱軸于點(diǎn)E,連接BC,EB,EC.試判斷△EBC的形狀,并加以證明;
(3)設(shè)P為直線MN上的動(dòng)點(diǎn),過(guò)P作PF∥ED交直線MN上方的拋物線于點(diǎn)F.問(wèn):在直線MN上是否存在點(diǎn)P,使得以P,E,D,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)P及相應(yīng)的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,拋物線交x軸于點(diǎn)A(-2,0),點(diǎn)B(4,0),交y軸于點(diǎn)C(0,-4).
(1)求拋物線的解析式,并寫出頂點(diǎn)D的坐標(biāo);
(2)若直線y=-x交拋物線于M,N兩點(diǎn),交拋物線的對(duì)稱軸于點(diǎn)E,連接BC,EB,EC.試判斷△EBC的形狀,并加以證明;
(3)設(shè)P為直線MN上的動(dòng)點(diǎn),過(guò)P作PF∥ED交直線MN下方的拋物線于點(diǎn)F.問(wèn):在直線MN上是否存在點(diǎn)P,使得以P、E、D、F為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)P及相應(yīng)的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:北京期末題 題型:解答題

如圖,拋物線交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)P是它的頂點(diǎn),點(diǎn)A的橫坐標(biāo)是-3,點(diǎn)B的橫坐標(biāo)是1。
(1) 求m、n的值;
(2)求直線PC的解析式;
(3)請(qǐng)?zhí)骄恳渣c(diǎn)A為圓心、直徑為5的圓與直線 PC的位置關(guān)系,并說(shuō)明理由。
        (參考數(shù):,,)

查看答案和解析>>

同步練習(xí)冊(cè)答案