已知:如圖,以等邊三角形ABC一邊AB為直徑的⊙O與邊AC、BC分別交于點(diǎn)D、E,過點(diǎn)D作DF⊥BC,垂足為F.
(1)求證:DF為⊙O的切線;
(2)若等邊三角形ABC的邊長(zhǎng)為4,求DF的長(zhǎng);
(3)求圖中陰影部分的面積.
證明:(1)連接DO.
∵△ABC是等邊三角形,
∴∠A=∠C=60°.
∵OA=OD,
∴△OAD是等邊三角形.
∴∠ADO=60°,
∵DF⊥BC,
∴∠CDF=90°﹣∠C=30°,
∴∠FDO=180°﹣∠ADO﹣∠CDF=90°,
∴DF為⊙O的切線;
(2)∵△OAD是等邊三角形,
∴AD=AO=AB=2.
∴CD=AC﹣AD=2.
Rt△CDF中,
∵∠CDF=30°,
∴CF=CD=1.
∴DF=;
(3)連接OE,由(2)同理可知CE=2.
∴CF=1,
∴EF=1.
∴S直角梯形FDOE=(EF+OD)•DF=,
∴S扇形OED==,
∴S陰影=S直角梯形FDOE﹣S扇形OED=﹣.
【解析】(1)連接DO,要證明DF為⊙O的切線只要證明∠FDP=90°即可;
(2)由已知可得到CD,CF的長(zhǎng),從而利用勾股定理可求得DF的長(zhǎng);
(3)連接OE,求得CF,EF的長(zhǎng),從而利用S直角梯形FDOE-S扇形OED求得陰影部分的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044
請(qǐng)回答下列問題:(不要求證明)
(1)四邊形ADEF是什么四邊形?
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADEF是矩形.
(3)當(dāng)△ABC滿足什么條件時(shí),以A、D、E、F為頂點(diǎn)的四邊形不存在.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com