如圖,在△ABC中,∠ACB=90°,以C為圓心的圓切AB于點(diǎn)D,交AC于點(diǎn)E,過(guò)點(diǎn)E作AB的垂線,垂足為H,HE交BC的延長(zhǎng)線于點(diǎn)G,已知∠A=α,AE=m,則EG=________(用含α,m的式子表示).


分析:連接CD,由于AB切⊙C于D,則CD⊥AB,CD∥EH,可證得△AEH∽△ACD,可用CE表示出CD、AC,根據(jù)相似三角形所得比例線段,即可求得CE的表達(dá)式,從而在Rt△CGE中,求出EG的長(zhǎng).
解答:解:連接CD;
∵AB切⊙C于D,
∴CD⊥AB,CD∥EH;
∴△AEH∽△ACD,得;
設(shè)CE=CD=x,則AC=AE+EC=m+x,
,即x=
在Rt△CEG中,∠G=∠A=α,則:
EG===
點(diǎn)評(píng):此題主要考查了切線的性質(zhì)、銳角三角函數(shù)以及相似三角形的性質(zhì),能夠構(gòu)造相似三角形并得到EC的表達(dá)式是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫(huà)出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫(huà)出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案