解:(1)設(shè)A,B兩點(diǎn)的坐標(biāo)分別是(x
1,0)、(x
2,0),
∵A,B兩點(diǎn)在原點(diǎn)的兩側(cè),
∴x
1x
2<0,即-(m+1)<0,
解得m>-1.
∵△=[2(m-1)]
2-4×(-1)×(m+1)
=4m
2-4m+8
=4×(m-
)
2+7
當(dāng)m>-1時,△>0,
∴m的取值范圍是m>-1;
(2)∵a:b=3:1,設(shè)a=3k,b=k(k>0),
則x
1=3k,x
2=-k,
∴
,
解得
.
∵
時,
(不合題意,舍去),
∴m=2,
∴拋物線的解析式是y=-x
2+2x+3;
(3)易求拋物線y=-x
2+2x+3與x軸的兩個交點(diǎn)坐標(biāo)是A(3,0),B(-1,0)
與y軸交點(diǎn)坐標(biāo)是C(0,3),頂點(diǎn)坐標(biāo)是M(1,4).
設(shè)直線BM的解析式為y=px+q,
則
.
解得
.
∴直線BM的解析式是y=2x+2.
設(shè)直線BM與y軸交于N,則N點(diǎn)坐標(biāo)是(0,2),
∴S
△BCM=S
△BCN+S
△MNC=
×1×1+
×1×1
=1
設(shè)P點(diǎn)坐標(biāo)是(x,y),
∵S
△ABP=8S
△BCM,
∴
×AB×|y|=8×1.
即
×4×|y|=8.
∴|y|=4.
∴y=±4.
當(dāng)y=4時,P點(diǎn)與M點(diǎn)重合,即P(1,4),
當(dāng)y=-4時,-4=-x
2+2x+3,
解得
.
∴滿足條件的P點(diǎn)存在.
P點(diǎn)坐標(biāo)是(1,4),(1+2
,-4)(1-2
,-4).
分析:(1)根據(jù)兩根之積小于0及根的判別式大于0得到m的取值.
(2)利用比值設(shè)出點(diǎn)A,B的坐標(biāo),利用根與系數(shù)的關(guān)系求解m,進(jìn)而求得拋物線解析式.
(3)應(yīng)先求得△BCM面積,進(jìn)而求得△BCM面積的8倍.易求得AB的長,設(shè)P的縱坐標(biāo)為y,那么△PAB的面積=
×AB×|P
Y|縱坐標(biāo)的絕對值.
點(diǎn)評:拋物線與x軸有2個交點(diǎn),根的判別式大于0;注意利用根與系數(shù)的兩個關(guān)系求解;到一條線段為定值的點(diǎn)的縱坐標(biāo)有2個.