如左圖,AB是半圓直徑,半徑OC⊥AB于點(diǎn)O,AD平分∠CAB分別交OC于點(diǎn)E,交弧BC于點(diǎn)D,連結(jié)CD、OD,給出以下四個(gè)結(jié)論:①S△AEC=2S△DEO;②AC=2CD;③線段OD是DE與DA的比例中項(xiàng);④2CD²=CE·AB.其中正確結(jié)論的序號( )
A. ①④ B. ①②④ C. ①③④ D. ③④
A.
【解析】
試題分析:根據(jù)圓的有關(guān)性質(zhì)以及相似三角形的判斷和性質(zhì)進(jìn)行解答.
①∵AD平分∠CAB,∴∠CAD=∠DAB,∵OA=OD,∴∠DAO=∠ADO,∴∠CAD=ADO,又∵∠AEC=∠DEO,∴△AEC∽△DEO,∴.∵0C⊥AO,∴∠AOC=90°,∵OC=OA,∴∠ACO=∠CAO=45°,∴AC=AO,∵OD=OA,∴AC=OD,∴=2,∴S△AEC=2S△DEO;
②連接BD,BC,∵OC⊥AB,∴∠AOC=∠BOC=90°,∴AC=BC.∵AD平分∠CAB,∴∠CAD=∠DAB,∵CD=BD,在△BCD中,CD+BD>BC,∴2CD>BC,又∵BC=AC,∴2CD>AC;
③∵OA=OD,∴△AOD是等腰三角形,且∠AOD=135°,但△ODE不是等腰三角形,∴△AOD與△ODE不相似,因此無法證明OD²=DE×AD,即無法證明線段OD是DE與DA的比例中項(xiàng);
④∵0C⊥AO,∴∠AOC=90°,∵OC=OA,∴∠ACO=∠CAO=45°,∴∠CDA=∠AOC=45°,∵CD=BD,∴∠COD=∠BOD=∠BOC=45°,∴∠CDE=∠COD,又∵∠ECD=∠DCO,∴△CDE∽△COD,∴,∴CD²=CO·CE,又∵CO=AB,∴CD²=AB·CE,∴2CD²=AB·CE.
故選擇A.
考點(diǎn):1圓的性質(zhì),2相似三角形的判定和性質(zhì).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
BC |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com