【題目】聊城市某黨支部在精準(zhǔn)扶貧活動(dòng)中,給結(jié)對(duì)幫扶的貧困家庭贈(zèng)送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價(jià)格比甲種樹苗貴10元,用600元購(gòu)買乙種樹苗的棵數(shù)恰好與用480元購(gòu)買甲種樹苗的棵數(shù)相同.

1)求甲、乙兩種樹苗每棵的價(jià)格各是多少元?

2)在實(shí)際幫扶中,他們決定再次購(gòu)買甲、乙兩種樹苗共50棵,此時(shí),甲種樹苗的售價(jià)比第一次購(gòu)買時(shí)降低了10%,乙種樹苗的售價(jià)不變,如果再次購(gòu)買兩種樹苗的總費(fèi)用不超過2000元,那么他們最多可購(gòu)買多少棵乙種樹苗?

【答案】(1) 40元, 50元;(2) 14棵.

【解析】

1)可設(shè)甲種樹苗每棵的價(jià)格是x元,則乙種樹苗每棵的價(jià)格是(x+10)元,根據(jù)等量關(guān)系:用600元購(gòu)買乙種樹苗的棵數(shù)恰好與用480元購(gòu)買甲種樹苗的棵數(shù)相同,列出方程求解即可;

2)可設(shè)他們可購(gòu)買y棵乙種樹苗,根據(jù)不等關(guān)系:再次購(gòu)買兩種樹苗的總費(fèi)用不超過2000元,列出不等式求解即可.

解:(1)設(shè)甲種樹苗每棵的價(jià)格是元,則乙種樹苗每棵的價(jià)格是(+10)元,依題意有

,

解得:x=40

經(jīng)檢驗(yàn),x=40是原方程的解,且符合題意.

x+10=40+10=50

答:甲種樹苗每棵的價(jià)格是40元,乙種樹苗每棵的價(jià)格是50元.

2)設(shè)他們可購(gòu)買y棵乙種樹苗,依題意有

40×110%)(50y+50y≤2000,

解得y≤,

y為整數(shù),

y最大為14

答:他們最多可購(gòu)買14棵乙種樹苗.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)為雙曲線上的一點(diǎn),過點(diǎn)軸、軸的垂線,分別交直線于點(diǎn)、兩點(diǎn)(點(diǎn)在點(diǎn)下方.若直線軸交于點(diǎn),與軸相交于點(diǎn),則的值為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)要經(jīng)營(yíng)一種新上市的文具,進(jìn)價(jià)為20元,試營(yíng)銷階段發(fā)現(xiàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量為250件,銷售單價(jià)每上漲1元,每天的銷售量就減少10

1)寫出商場(chǎng)銷售這種文具,每天所得的銷售利潤(rùn)(元)與銷售單價(jià)(元)之間的函數(shù)關(guān)系式;

2)求銷售單價(jià)為多少元時(shí),該文具每天的銷售利潤(rùn)最大;

3)商場(chǎng)的營(yíng)銷部結(jié)合上述情況,提出了A、B兩種營(yíng)銷方案

方案A:該文具的銷售單價(jià)高于進(jìn)價(jià)且不超過30元;

方案B:每天銷售量不少于10件,且每件文具的利潤(rùn)至少為25

請(qǐng)比較哪種方案的最大利潤(rùn)更高,并說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知將反比例函數(shù)x0),沿y軸翻折得到反比例函數(shù)x0),一次函數(shù)yax+b交于A1,m),B4,n)兩點(diǎn);

1)求反比例函數(shù)y2和一次函數(shù)yax+b的解析式;

2)連接OA,過BBCx軸,垂足為C,點(diǎn)P是線段AB上一點(diǎn),若直線OP將四邊形OABC的面積分成12兩部分,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把八個(gè)完全相同的小球平分為兩組,每組中每個(gè)分別寫上1,2,3,4四個(gè)數(shù)字,然后分別裝入不透明的口袋內(nèi)攪勻,從第一個(gè)口袋內(nèi)取出一個(gè)數(shù)記下數(shù)字后作為點(diǎn)P的橫坐標(biāo)x,然后再?gòu)牡诙䝼(gè)口袋中取出一個(gè)球記下數(shù)字后作為點(diǎn)P的縱坐標(biāo),則點(diǎn)P(x,y)落在直線y=﹣x+5上的概率是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn),且與軸交于,兩點(diǎn),與軸交于點(diǎn),連接,

該拋物線的解析式;

如圖,點(diǎn)是所求拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)軸的垂線,分別交軸于點(diǎn),交直線于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,當(dāng)時(shí),過點(diǎn),軸于點(diǎn),連接,則為何值時(shí),的面積取得最大值,并求出這個(gè)最大.

如圖,中,,,,直角邊軸上,且重合,當(dāng)沿軸從右向左以每秒個(gè)單位長(zhǎng)度的速度移動(dòng)時(shí),設(shè)重疊部分的面積為,求當(dāng)時(shí),移動(dòng)的時(shí)間

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,AB4,∠DAB120°,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位的速度沿AC向終點(diǎn)C運(yùn)動(dòng).過PPEABAB于點(diǎn)E,作PFADAD于點(diǎn)F,設(shè)四邊形AEPF與△ABD的重疊部分的面積為S,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t

1)用含t的代數(shù)式表示線段BE的長(zhǎng);

2)當(dāng)點(diǎn)P與點(diǎn)O重合時(shí),求t的值;

3)求St之間的函數(shù)關(guān)系式;

4)在點(diǎn)P出發(fā)的同時(shí),有一點(diǎn)Q從點(diǎn)C出發(fā),以每秒6個(gè)單位的速度沿折線CDAB運(yùn)動(dòng),設(shè)點(diǎn)Q關(guān)于AC的對(duì)稱點(diǎn)是Q',直接寫出PQ'與菱形ABCD的邊垂直時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知⊙O的半徑為13,弦ABCD,AB=24,CD=10,則四邊形ACDB的面積是( 。

A.119B.289C.77119D.119289

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一條直線經(jīng)過點(diǎn)C(1,0)點(diǎn)D(0,﹣2),將這條直線向右平移與x軸、y軸分別交于點(diǎn)B、點(diǎn)A,若DBDC,則直線AB的函數(shù)解析式為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案