△ABC中,AB=10,BC=12,BC邊上的中線AD=8,求AC的長.
分析:根據(jù)題意畫出圖形,根據(jù)勾股定理的逆定理判斷出△ABD的形狀,再根據(jù)勾股定理求出AC的長即可.
解答:解:∵AB=10,BC=12,AD是BC邊上的中線,AD=8,
∴BD=CD=
1
2
BC=
1
2
×12=6,
∵102=82+62,即AB2=AD2+BD2,
∴AD⊥DC
∴△ADC是直角三角形,
∴AC=
AD2+CD2
=
82+62
=10.
點(diǎn)評(píng):本題考查的是勾股定理的逆定理,即如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個(gè)三角形就是直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,∠A=36°,
(1)用尺規(guī)作圖的方法,過B點(diǎn)作∠ABC的平分線交AC于D(不寫作法,保留作圖痕跡);
(2)求證:BC=BD=AD;
(3)求證:AD2=AC•DC;
(4)設(shè)
CDDA
=x,求x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,在△ABC中,AB=AC,點(diǎn)D,E在直線BC上運(yùn)動(dòng).如果∠DAE=l05°,△ABD∽△ECA,則∠BAC=
30
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)△ABC中,AB=AC,D、E分別是AB、AC的中點(diǎn),若AB=4,BC=6,則△ADE的周長是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、在△ABC中,AB=AC,BD是△ABC中線,已知△ABD和△BDC的周長之差為6,△ABC的周長是30,求這個(gè)等腰三角形的三邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在鈍角△ABC中,AB=AC,以BC為直徑作⊙O,⊙O與BA、CA的延長線分別交于D、E兩點(diǎn)精英家教網(wǎng),連接AO、BE、DC.
(1)求證:△ABO∽△CBD;
(2)若AB=2AD,且BC=2,求∠ACB的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案