【題目】如圖,正方形ABCD中.點E,F分別在BC,CD上,△AEF是等邊三角形.連接AC交EF于點G.過點G作GH⊥CE于點H.若,則=( 。
A. 6 B. 4 C. 3 D. 2
【答案】A
【解析】解:∵四邊形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.
∵△AEF等邊三角形,∴AE=EF=AF,∠EAF=60°,∴∠BAE+∠DAF=30°.
在Rt△ABE和Rt△ADF中,∵AE=AF,AB=AD,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∴△CEF是等腰直角三角形,∵AE=AF,∴AC垂直平分EF,∴EG=GF,∵GH⊥CE,∴GH∥CF,∴△EGH∽△EFC,∵S△EGH=3,∴S△EFC=12,∴CF=,EF=,∴AF=,設AD=x,則DF=x﹣,∵AF2=AD2+DF2,∴()2=x2+(x﹣)2,∴x=,∴AD=,DF=,∴S△ADF=ADDF=6.故選A.
科目:初中數(shù)學 來源: 題型:
【題目】畫圖并填空:如圖,方格紙中每個小正方形的邊長都為1.在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標出了點B的對應點B′.
(1)在給定方格紙中畫出平移后的△A′B′C′;
(2)畫出AB邊上的中線CD和BC邊上的高線AE;
(3)線段AA′與線段BB′的關系是: ;
(4)求四邊形ACBB′的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,點A是半圓上的一個三等分點,B是劣弧的中點,點P是直徑MN上的一個動點,⊙O的半徑為1,則AP+PB的最小值_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明騎單車上學,當他騎了一段路時,想起要買某本書,于是又折回到剛經(jīng)過的某書店,買到書后繼續(xù)去學校以下是他本次上學所用的時間與路程的關系示意圖.
根據(jù)圖中提供的信息回答下列問題:
(1)小明家到學校的路程是________米
(2)小明在書店停留了___________分鐘.
(3)本次上學途中,小明一共行駛了________ 米,一共用了______ 分鐘.
(4)在整個上學的途中_________(哪個時間段)小明騎車速度最快,最快的速度是___________米/分.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE⊥BC,CF⊥AD,垂足分別為E,F,AE,CF分別與BD交于點G和H,且AB=.
(1)若tan∠ABE =2,求CF的長;
(2)求證:BG=DH.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知DC∥FP,∠1=∠2,∠FED=28,∠AGF=80,FH平分∠EFG.
(1)說明:DC∥AB;
(2)求∠PFH的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,坐標原點O是菱形ABCD的對稱中心.邊AB與x軸平行,點B(1,-2),反比例函數(shù)(k≠0)的圖象經(jīng)過A,C兩點.
(1)求點C的坐標及反比例函數(shù)的解析式.
(2)直線BC與反比例函數(shù)圖象的另一交點為E,求以O,C,E為頂點的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場計劃購進A、B兩種商品,若購進A種商品2件和B種商品1件需45元;若購進A種商品3件和B種商品2件需70元.
(1)A、B兩種商品每件的進價分別是多少元?
(2)若購進A、B兩種商品共100件,總費用不超過1000元,最多能購進A種商品多少件?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com