x≠2
x≠2
時,分式
|x|-2x2-4x+4
有意義.
分析:分母為零,分式無意義;分母不為零,分式有意義.
解答:解:由題意得:x2-4x+4≠0,
解得:x≠2,
故答案為:x≠2.
點評:此題主要考查了分式有意義的條件,從以下三個方面透徹理解分式的概念:
(1)分式無意義?分母為零;
(2)分式有意義?分母不為零;
(3)分式值為零?分子為零且分母不為零.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料并解決有關問題:
我們知道,現(xiàn)在我們可以用這一結論來化簡含有絕對值的代數(shù)式,如化簡代數(shù)式|x+1|+|x-2|時,可令x+1=0和x-2=O,分別求得x=-1,x=2(稱-1,2分別為|x+1|與|x-2|的零點值).在實數(shù)范圍內(nèi),零點值x=-1和,x=2可將全體實數(shù)分成不重復且不遺漏的如下3種情況:
(1)x<-1;(2)-1≤x<2;(3)x≥2.從而化簡代數(shù)式|x+1|+|x-2|可分以下3種情況:
(1)當x<-1時,原式=-(x+1)-(x-2)=-2x+1;
(2)當-1≤x<2時,原式=x+1-(x-2)=3;
(3)當x≥2時,原式=x+1+x-2=2x-1.
綜上討論,原式=
-2x+1(x<-1)
3(-1≤x<2)
2x-1(x≥2)

通過以上閱讀,請你解決以下問題:
(1)分別求出|x+2|和|x-4|的零點值;
(2)化簡代數(shù)式|x+2|+|x-4|.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

二次函數(shù)y=x2+2x-3的圖象是
拋物線
拋物線
,開口
,對稱軸是
x=-1
x=-1
,頂點坐標是
(-1,-4)
(-1,-4)
;與x軸的兩個交點坐標分別是
(1,0),(-3,0)
(1,0),(-3,0)
,與y軸的交點坐標是
(0,-3)
(0,-3)
,對稱軸左側(
x<-1
x<-1
)y隨x的增大而
減小
減小
;對稱軸右側(
x>-1
x>-1
)y隨x的增大而
增大
增大
,當x=
-1
-1
時,y有最
值為
-4
-4
;它是y=x2
平移
1
1
個單位向
平移
4
4
個單位得到的;當x
<-3或x>1
<-3或x>1
時,y>0,當x
-3<x<1
-3<x<1
時,y<0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(2012•赤峰)閱讀材料:
(1)對于任意兩個數(shù)a、b的大小比較,有下面的方法:
當a-b>0時,一定有a>b;
當a-b=0時,一定有a=b;
當a-b<0時,一定有a<b.
反過來也成立.因此,我們把這種比較兩個數(shù)大小的方法叫做“求差法”.
(2)對于比較兩個正數(shù)a、b的大小時,我們還可以用它們的平方進行比較:
∵a2-b2=(a+b)(a-b),a+b>0
∴(a2-b2)與(a-b)的符號相同
當a2-b2>0時,a-b>0,得a>b
當a2-b2=0時,a-b=0,得a=b
當a2-b2<0時,a-b<0,得a<b
解決下列實際問題:
(1)課堂上,老師讓同學們制作幾種幾何體,張麗同學用了3張A4紙,7張B5紙;李明同學用了2張A4紙,8張B5紙.設每張A4紙的面積為x,每張B5紙的面積為y,且x>y,張麗同學的用紙總面積為W1,李明同學的用紙總面積為W2.回答下列問題:
①W1=
3x+7y
3x+7y
(用x、y的式子表示)
W2=
2x+8y
2x+8y
(用x、y的式子表示)
②請你分析誰用的紙面積最大.
(2)如圖1所示,要在燃氣管道l上修建一個泵站,分別向A、B兩鎮(zhèn)供氣,已知A、B到l的距離分別是3km、4km(即AC=3km,BE=4km),AB=xkm,現(xiàn)設計兩種方案:

方案一:如圖2所示,AP⊥l于點P,泵站修建在點P處,該方案中管道長度a1=AB+AP.
方案二:如圖3所示,點A′與點A關于l對稱,A′B與l相交于點P,泵站修建在點P處,該方案中管道長度a2=AP+BP.
①在方案一中,a1=
(3+x)
(3+x)
km(用含x的式子表示);
②在方案二中,a2=
x2+48
x2+48
km(用含x的式子表示);
③請你分析要使鋪設的輸氣管道較短,應選擇方案一還是方案二.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料并解決有關問題:我們知道:|x|=
-x(當x<0時)
0(當x=0時)
x(當x>0時)
,現(xiàn)在我們可以用這一結論來解含有絕對值的方程.例如,解方程|x+1|+|2x-3|=8時,可令x+1=0和2x-3=0,分別求得x=-1和
3
2
,(稱-1和
3
2
分別為|x+1|和|2x-3|的零點值),在實數(shù)范圍內(nèi),零點值x=-1和可將全體實數(shù)分成不重復且不遺漏的如下3種情況:①x<-1②-1≤x<
3
2
x≥
3
2
,從而解方程|x+1|+|2x-3|=8可分以下三種情況:
①當x<-1時,原方程可化為-(x+1)-(2x-3)=8,解得x=-2.
②當-1≤x<
3
2
時,原方程可化為(x+1)-(2x-3)=8,解得x=-4,但不符合-1≤x<
3
2
,故舍去.
③當x≥
3
2
時,原方程可化為(x+1)+(2x-3)=8,解得x=
10
3

綜上所述,方程|x+1|+|2x-3|=8的解為,x=-2和x=
10
3

通過以上閱讀,請你解決以下問題:
(1)分別求出|x+2|和|3x-1|的零點值.
(2)解方程|x+2|+|3x-1|=9.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知長方形的相鄰兩邊的長分別是xcm和4cm,設長方形的周長為ycm.
①試寫出長方形的周長y與x之間的關系式
y=2x+8
y=2x+8
;
②求當x長為10cmm時,周長是
28
28
cm;
③求當x長為15cm時,周長是
38
38
cm;
④當周長為20cm時,x=
6
6
cm;
⑤當周長為30cm時,x=
11
11
cm.

查看答案和解析>>

同步練習冊答案