如圖1,已知拋物線的頂點為,且經(jīng)過原點,與軸的另一個交點為

(1)求拋物線的解析式;

(2)若點在拋物線的對稱軸上,點在拋物線上,且以四點為頂點的四邊形為平行四邊形,求點的坐標(biāo);

(3)連接,如圖2,在軸下方的拋物線上是否存在點,使得相似?若存在,求出點的坐標(biāo);若不存在,說明理由.

 


解:(1)由題意可設(shè)拋物線的解析式為拋物線過原點,

拋物線的解析式為,

(2)如圖1,當(dāng)四邊形是平行四邊形時,

,得,,

點的橫坐標(biāo)為.將代入,

,;

根據(jù)拋物線的對稱性可知,在對稱軸的左側(cè)拋物線上存在點,使得四邊形是平行四邊形,此時點的坐標(biāo)為

 當(dāng)四邊形是平行四邊形時,點即為點,此時點的坐標(biāo)為.··· (8分)

(3)如圖2,由拋物線的對稱性可知:

,

相似,

必須有

設(shè)交拋物線的對稱軸于點,

顯然,直線的解析式為

,得,.過軸,

中,,

不相似,同理可說明在對稱軸左邊的拋物線上也不存在符合條件的點.

所以在該拋物線上不存在點,使得相似.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知拋物線的頂點為A(2,1),且經(jīng)過原點O,與x軸的另一個交點為B.
(1)求拋物線的解析式;
(2)若點C在拋物線的對稱軸上,點D在拋物線上,且以O(shè)、C、D、B四點為頂點的四邊形為平行四邊形,求D點的坐標(biāo);
(3)連接OA、AB,如圖2,在x軸下方的拋物線上是否存在點P,使得△OBP與△OAB相似?若存在,求出P點的坐標(biāo);若不存在,說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,點D、E在x軸上,CF交y軸于點B(0,2),且其面積為8:
(1)此拋物線的解析式;
(2)如圖2,若點P為所求拋物線上的一動點,試判斷以點P為圓心,PB為半徑的圓與x軸的位置關(guān)系,并說明理由.
(3)如圖2,設(shè)點P在拋物線上且與點A不重合,直線PB與拋物線的另一個交點為Q,過點P、Q分別作x軸的垂線,垂足分別為N、M,連接PO、QO.求證:△QMO∽△PNO.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知拋物線的頂點為A(O,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B(0,2),且其面積為8.
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連接PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•黔南州)如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B,且其面積為8,F(xiàn)點的坐標(biāo)為(2,2).
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連結(jié)PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②試探索在線段SR上是否存在點M,使得以點P、S、M為頂點的三角形和以點Q、R、M為頂點的三角形相似?若存在,請找出M點的位置;若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知拋物線的頂點為A(2,1),且經(jīng)過原點O,與x軸的另一個交點為B.

(1)求拋物線的解析式;
(2)連接OA,AB,如圖2,在x軸下方的拋物線上是否存在點P,使得△OBP與△OAB相似?若存在,求出P點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案