如圖,在平面直角坐標(biāo)系中,拋物線所表示的函數(shù)解析式為y=﹣2(x﹣h)2+k,則下列
結(jié)論正確的是
A.h>0,k>0B.h<0,k>0C.h<0,k<0 D.h>0,k<0
A

試題分析:∵拋物線y=﹣2(x﹣h)2+k的頂點(diǎn)坐標(biāo)為(h,k),由圖可知,拋物線的頂點(diǎn)坐標(biāo)在第一象限,
∴h>0,k>0。
故選A!
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:一元二次方程
(1)求證:不論k為何實(shí)數(shù)時(shí),此方程總有兩個(gè)實(shí)數(shù)根;
(2)設(shè)k<0,當(dāng)二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)A、B間的距離為4時(shí),求此二次函數(shù)的解析式;
(3)在(2)的條件下,若拋物線的頂點(diǎn)為C,過(guò)y軸上一點(diǎn)M(0,m)作y軸的垂線l,當(dāng)m為何值時(shí),直線l與△ABC的外接圓有公共點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c的開(kāi)口向下,與x軸交于點(diǎn)A(﹣3,0)和點(diǎn)B(1,0).與y軸交于點(diǎn)C,頂點(diǎn)為D.

(1)求頂點(diǎn)D的坐標(biāo).(用含a的代數(shù)式表示);
(2)若△ACD的面積為3.
①求拋物線的解析式;
②將拋物線向右平移,使得平移后的拋物線與原拋物線交于點(diǎn)P,且∠PAB=∠DAC,求平移后拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=a(x﹣h)2+k經(jīng)過(guò)點(diǎn)A(0,1),且頂點(diǎn)坐標(biāo)為B(1,2),它的對(duì)稱軸與x軸交于點(diǎn)C.

(1)求此拋物線的解析式.
(2)在第一象限內(nèi)的拋物線上求點(diǎn)P,使得△ACP是以AC為底的等腰三角形,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo).
(3)上述點(diǎn)是否是第一象限內(nèi)此拋物線上與AC距離最遠(yuǎn)的點(diǎn)?若是,請(qǐng)說(shuō)明理由;若不是,請(qǐng)求出第一象限內(nèi)此拋物線上與AC距離最遠(yuǎn)的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=x2+bx+c過(guò)點(diǎn)A(﹣4,﹣3),與y軸交于點(diǎn)B,對(duì)稱軸是x=﹣3,請(qǐng)解答下列問(wèn)題:

(1)求拋物線的解析式.
(2)若和x軸平行的直線與拋物線交于C,D兩點(diǎn),點(diǎn)C在對(duì)稱軸左側(cè),且CD=8,求△BCD的面積.
注:拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,矩形OABC的邊OA=2,OC=6,在OC上取點(diǎn)D將△AOD沿AD翻折,使O點(diǎn)落在AB邊上的E點(diǎn)處,將一個(gè)足夠大的直角三角板的頂點(diǎn)P從D點(diǎn)出發(fā)沿線段DA→AB移動(dòng),且一直角邊始終經(jīng)過(guò)點(diǎn)D,另一直角邊所在直線與直線DE,BC分別交于點(diǎn)M,N.
(1)填空:D點(diǎn)坐標(biāo)是(  ,  ),E點(diǎn)坐標(biāo)是(  ,  );
(2)如圖1,當(dāng)點(diǎn)P在線段DA上移動(dòng)時(shí),是否存在這樣的點(diǎn)M,使△CMN為等腰三角形?若存在,請(qǐng)求出M點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)如圖2,當(dāng)點(diǎn)P在線段AB上移動(dòng)時(shí),設(shè)P點(diǎn)坐標(biāo)為(x,2),記△DBN的面積為S,請(qǐng)直接寫(xiě)出S與x之間的函數(shù)關(guān)系式,并求出S隨x增大而減小時(shí)所對(duì)應(yīng)的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在⊙C的內(nèi)接△AOB中,AB=AO=4,tan∠AOB=,拋物線(a≠0)經(jīng)過(guò)點(diǎn)A(4,0)與點(diǎn)(﹣2,6).

(1)求拋物線的解析式;
(2)直線m與⊙C相切于點(diǎn)A,交y軸于點(diǎn)D,動(dòng)點(diǎn)P在線段OB上,從點(diǎn)O出發(fā)向點(diǎn)B運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q在線段DA上,從點(diǎn)D出發(fā)向點(diǎn)A運(yùn)動(dòng),點(diǎn)P的速度為每秒1個(gè)單位長(zhǎng),點(diǎn)Q的速度為每秒2個(gè)單位長(zhǎng).當(dāng)PQ⊥AD時(shí),求運(yùn)動(dòng)時(shí)間t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖①,若二次函數(shù)的圖象與x軸交于點(diǎn)A(-2,0),B(3,0)兩點(diǎn),點(diǎn)A關(guān)于正比例函數(shù)的圖象的對(duì)稱點(diǎn)為C。
(1)求b、c的值;
(2)證明:點(diǎn)C 在所求的二次函數(shù)的圖象上;
(3)如圖②,過(guò)點(diǎn)B作DB⊥x軸交正比例函數(shù)的圖象于點(diǎn)D,連結(jié)AC,交正比例函數(shù)的圖象于點(diǎn)E,連結(jié)AD、CD。如果動(dòng)點(diǎn)P從點(diǎn)A沿線段AD方向以每秒2個(gè)單位的速度向點(diǎn)D運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)D沿線段DC方向以每秒1個(gè)單位的速度向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一個(gè)到達(dá)終點(diǎn)時(shí),另一個(gè)隨之停止運(yùn)動(dòng),連結(jié)PQ、QE、PE,設(shè)運(yùn)動(dòng)時(shí)間為t秒,是否存在某一時(shí)刻,使PE平分∠APQ,同時(shí)QE平分∠PQC,若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

請(qǐng)寫(xiě)出一個(gè)開(kāi)口向上,并且與y軸交于點(diǎn)(0,1)的拋物線的解析式       .

查看答案和解析>>

同步練習(xí)冊(cè)答案