已知:如圖,⊙O的半徑為5,弦AB的長等于8,OD⊥AB,垂足為點D,DO的延長線與⊙O相交于點C,點E在弦AB的延長線上,CE與⊙O相交于點F,cosC=
求:(1)CD的長;
(2)EF的長.

【答案】分析:(1)連接OA,根據(jù)垂徑定理求出AD,根據(jù)勾股定理求出OD,即可求出CD(CD=OD+OA);
(2)作OH⊥CE,垂足為點H,根據(jù)cosC=求出CH,求出CF,在△CDE中,根據(jù)cosC=求出CE,相減即可求出EF.
解答:解:(1)連接OA.
∵OD⊥AB,AB=8,
∴AD=AB=4,
∵OA=5,
∴由勾股定理得:OD=3,
∵OC=5,
∴CD=8.

(2)作OH⊥CE,垂足為點H.
∵OC=5,cosC=,
∴CH=4,
∵OH⊥CE,
∴由垂徑定理得:CF=2CH=8,
又∵CD=8,cosC=,
∴CE=10,
∴EF=10-8=2.
點評:本題考查了垂徑定理,勾股定理,銳角三角形函數(shù)定義等知識點,主要考查學生運用定理進行計算的能力,題目比較典型,是一道比較好的題目.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知:如圖,AB為半⊙O的直徑,C、D、E為半圓弧上的點,
CD
=
DE
=
EB
,∠BOE=55°,則∠AOC的度數(shù)為
 
度.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖直線l的解析式為y=x+4,交x、y軸分別于A、B兩點,點M(-1,3)在直線l上,O為原點.
(1)點N在x軸的負半軸上,且∠MNO=60°,則AN=
3-
3
3-
3
;
(2)點P在y軸上,線段PM繞點P旋轉(zhuǎn)60°得到線段PQ,且點Q恰好在直線l上,則點P的坐標為
(0,1+
3
)或(0,1-
3
(0,1+
3
)或(0,1-
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知,如圖直線l的解析式為y=x+4,交x、y軸分別于A、B兩點,點M(-1,3)在直線l上,O為原點.
(1)點N在x軸的負半軸上,且∠MNO=60°,則AN=______;
(2)點P在y軸上,線段PM繞點P旋轉(zhuǎn)60°得到線段PQ,且點Q恰好在直線l上,則點P的坐標為______.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年浙江省金華五中中考數(shù)學模擬試卷(5月份)(解析版) 題型:填空題

已知,如圖直線l的解析式為y=x+4,交x、y軸分別于A、B兩點,點M(-1,3)在直線l上,O為原點.
(1)點N在x軸的負半軸上,且∠MNO=60°,則AN=   
(2)點P在y軸上,線段PM繞點P旋轉(zhuǎn)60°得到線段PQ,且點Q恰好在直線l上,則點P的坐標為   

查看答案和解析>>

科目:初中數(shù)學 來源:《24.1.2 弧、弦、圓心角》2009年同步練習(解析版) 題型:填空題

已知:如圖,AB為半⊙O的直徑,C、D、E為半圓弧上的點,==,∠BOE=55°,則∠AOC的度數(shù)為    度.

查看答案和解析>>

同步練習冊答案